Skip to main content
Log in

Improve the Hole Size–Dependent Refractive Index Sensitivity of Au–Ag Nanocages by Tuning the Alloy Composition

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, Au–Ag nanoboxes are converted into Au–Ag alloy nanocages by increasing the hole size. The extinction spectrum and the refractive index sensing characteristics of Au–Ag alloy nanocages with different geometric parameters are studied by using discrete dipole approximation method (DDA). With the increase of Au composition, the peak of local surface plasmon resonance (LSPR) shows approximately linear redshift and the sensitivity factor shows approximately linear decrease. The refractive index sensitivity can be effectively controlled by the Au–Ag ratio at large hole size because the hole and cavity surfaces distribute more environmental dielectric components. Therefore, increasing the hole size and decreasing the Au–Ag ratio can improve the refractive index sensitivity. These calculation results have also been verified experimentally. In order to illustrate the influence of alloy composition on the LSPR characteristics and the refractive index sensitivity, the local electric field distributions under different geometric parameters are plotted. We find that the electric field direction on the hole and cavity surfaces is controlled by the Au–Ag ratio and environmental dielectric constant. Moreover, the field vectors on the hole and cavity surfaces are formed by the superposition of the incident field, the electric field generated by the oscillating electrons on the outer surface, and the polarized field in the environmental dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Custom code data supporting the results of this study are available from the corresponding author upon reasonable request. The software used is DDSCAT.7.3.

References

  1. Zhu J, Chen JK, Li JJ, Zhao JW (2019) Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe. Appl Phys A 125:62

    Article  Google Scholar 

  2. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Zhang P, Mao X, Fu W, Liu C (2016) Seed-mediated growth of bimetallic nanoparticles as an effective strategy for sensitive detection of vitamin C. Sens Actuators, B Chem 231:95–101

    Article  CAS  Google Scholar 

  4. Chen JK, Zhao SM, Zhu J, Li JJ, Zhao JW (2020) Colorimetric determination and recycling of Hg2+ based on etching-induced morphology transformation from hollow AuAg nanocages to nanoboxes. J Alloys Compd 828:154392

  5. Wang Y, Zhang P, Fu W, Zhao Y (2018) Morphological control of nanoprobe for colorimetric antioxidant detection. Biosens Bioelectron 122:183–188

    Article  CAS  PubMed  Google Scholar 

  6. Bao S, Huang S, Liu Y, Hu Y, Wang W, Ji M, Li H, Zhang NX, Song C, Duan S (2017) Gold nanocages with dual modality for image-guided therapeutics. Nanoscale 9:7284–7296

    Article  CAS  PubMed  Google Scholar 

  7. Li K, Wang Y, Cai F, Yu J, Wang S, Zhu Z, Chu L, Zhang H, Qian J, He S (2015) Nonlinear optical properties of Au/Ag alloyed nanoboxes and their applications in both in vitro and in vivo bioimaging under long-wavelength femtosecond laser excitation. RSC Adv 5:2851–2856

    Article  CAS  Google Scholar 

  8. Pang B, Yang X, Xia Y (2016) Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine (Lond) 11:1715–1728

    Article  CAS  Google Scholar 

  9. Zhang CH, Zhu J, Li JJ, Zhao JW (2015) Misalign-dependent double plasmon modes “switch” of gold triangular nanoplate dimers. Int J Appl Phys 117:063102

  10. Zhu J, Deng XC (2011) Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sens Actuators, B Chem 155:843–847

    Article  CAS  Google Scholar 

  11. Zhu J, Li JJ, Zhao JW (2013) Improve the refractive index sensitivity of coaxial-cable type gold nanostructure: the effect of dielectric polarization from the separate layer. J Nanopart Res 15:1721

    Article  Google Scholar 

  12. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  PubMed  Google Scholar 

  14. Sekhon JS, Malik HK, Verma SS (2013) DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC Adv 3:15427–15434

    Article  CAS  Google Scholar 

  15. Liaw JW, Cheng JC, Ma C, Zhang R (2013) Theoretical analysis of plasmon modes of Au–Ag nanocages. J Phys Chem C 117:19586–19592

    CAS  Google Scholar 

  16. Lee YH, Chen H, Xu QH, Wang J (2011) Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type. J Phys Chem C 115:7997–8004

    Article  CAS  Google Scholar 

  17. Edit C, Albert O, Erika V, Adám J, Norbert B, László K, Andrea M & Imre D (2012) Synthesis and characterization of Ag/Au alloy and core(Ag)–shell(Au) nanoparticles. Colloids Surf, A 415:281–287

    Article  Google Scholar 

  18. Zhang Q, Cobley CM, Zeng J, Wen LP, Chen J, Xia Y (2010) Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: a method for both tailoring the optical properties and measuring the H2O2 concentration. J Phys Chem C 114:6396–6400

    Article  CAS  Google Scholar 

  19. Zhu J, Zhao BZ, Qi Y, Li JJ, Li X, Zhao JW (2018) Colorimetric determination of Hg(II) by combining the etching and aggregation effect of cysteine-modified Au-Ag core-shell nanorods. Sensors and Actuators 255:2927–2935

    Article  CAS  Google Scholar 

  20. Zhu J, Jia TT, Li JJ, Li X, Zhao JW (2019) Plasmonic spectral determination of Hg(II) based on surface etching of Au-Ag core-shell triangular nanoplates: From spectrum peak to dip. Spectrochim Acta Part A Mol Biomol Spectrosc 207:337–347

    Article  CAS  Google Scholar 

  21. Qi Y, Zhao J, Weng GJ, Li JJ, Li X, Zhu J, Zhao JW (2018) A colorimetric/SERS dual-mode sensing for detection of mercury (II) based on rhodanine stabilized gold nanobipyramids. J Mater Chem 6:12283–12293

    CAS  Google Scholar 

  22. Zhu J, Chen XH, Li JJ, Zhao JW (2019) The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering. Spectrochim Acta Part A Mol Biomol Spectrosc 211:154–165

    Article  CAS  Google Scholar 

  23. Zhu J, Xu Z, Weng GJ, Zhao J, Li JJ, Zhao JW (2018) Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere. Spectrochim Acta Part A Mol Biomol Spectrosc 200:43–50

    Article  CAS  Google Scholar 

  24. Zhu J, Zhang F, Chen BB, Li JJ, Zhao JW (2015) Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature. Mater Sci Eng, B 199:113–120

    Article  CAS  Google Scholar 

  25. Chew WS, Pedireddy S, Lee YH, Tjiu WW, Liu YJ, Yang Z, Ling XY (2015) Nanoporous gold nanoframes with minimalistic architectures: lower porosity generates stronger surface-enhanced Raman scattering capabilities. Chem Mater 27:7827–7834

    Article  CAS  Google Scholar 

  26. Mahmoud MA, El-Sayed MA (2009) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett 9:3025–3031

    Article  CAS  PubMed  Google Scholar 

  27. McLellan JM, Siekkinen A, Chen JY, Xia YN (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126

    Article  CAS  Google Scholar 

  28. McLellan JM, Li ZY, Siekkinen AR, Xia YN (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017

    Article  CAS  PubMed  Google Scholar 

  29. Zhou F, Li ZY, Liu Y, Xia YN (2008) Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles. J Phys Chem C 112:20233–20240

    Article  CAS  Google Scholar 

  30. Skrabalak SE, Chen JY, Au L, Lu XM, Li XD, Xia YN (2007) Gold nanocages for biomedical applications. J Adv Mater (Deerfield Beach, Fla.) 19:3177–3184

  31. Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y (2016) Antibacterial properties and mechanisms of gold-silver nanocages. Nanoscale 8:11143–11152

    Article  CAS  PubMed  Google Scholar 

  32. Au L, Lu XM, Xia YN (2008) A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2- or AuCl4-. J Adv Mater (Deerfield Beach, Fla.) 20 2517–2522

  33. Cao M, Wang M, Ning G (2009) Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J Phys Chem C 113:1217–1221

    Article  CAS  Google Scholar 

  34. Mahmoud MA, El-Sayed MA (2010) Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors. J Am Chem Soc 132:12704–12710

    Article  CAS  PubMed  Google Scholar 

  35. Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface-enhanced Raman spectroscopy. theory and experiment. J Phys Chem C 114:7436–7443

    Article  CAS  Google Scholar 

  36. Jain PK, El-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C 111:17451–17454

    Article  CAS  Google Scholar 

  37. Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  38. DeVoe H (1964) Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J Chem Phys 41:393–400

    Article  CAS  Google Scholar 

  39. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  40. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  41. Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872

    Article  CAS  Google Scholar 

  42. Goodman JJ, Draine BT, Flatau PJ (1991) Application of fast-Fourier-transform techniques to the discrete-dipole approximation. Opt Lett 16:1198–1200

    Article  CAS  PubMed  Google Scholar 

  43. Draine BT, Goodman J (1993) Beyond clausius-mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys J 405:685–697

    Article  Google Scholar 

  44. Draine BT, Flatau PJ (2008) Discrete-dipole approximation for periodic targets: theory and tests. J Opt Soc Am A 25:2693–2703

    Article  Google Scholar 

  45. Flatau PJ, Draine BT (2012) Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express 20:1247–1252

    Article  CAS  PubMed  Google Scholar 

  46. Yurkin MA, Kahnert M (2013) Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method. J Quant Spectrosc Radiat Transfer 123:176–183

    Article  CAS  Google Scholar 

  47. Yurkin MA, Maltsev VP, Hoekstra AG (2006) Convergence of the discrete dipole approximation. I. Theoretical analysis. J Opt Soc Am A 23:2578–2591

    Article  Google Scholar 

  48. Draine B, University P, Oceanography SI, Ucsd (2013) User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv: J Comput Phys

  49. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  50. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  51. Papavassiliou GC (1976) Surface plasmons in small Au-Ag alloy particles. J Phys F: Met Phys 6:L103-105

    Article  CAS  Google Scholar 

  52. Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108:17290–17294

    Article  CAS  Google Scholar 

  53. Prodan E, Lee A, Nordlander P (2002) The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem Phys Lett 360:325–332

    Article  CAS  Google Scholar 

  54. Siekkinen AR, McLellan JM, Chen J, Xia YN (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun YG, Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    Article  CAS  PubMed  Google Scholar 

  56. Zhu J, Zhang F, Li JJ, Zhao JW (2013) Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating. Sens Actuators, B Chem 183:556–564

    Article  CAS  Google Scholar 

  57. Zhu J (2009) Composition-dependent plasmon shift in Au−Ag alloy nanotubes: effect of local field distribution. J Phys Chem C 113:3164–3167

    Article  CAS  Google Scholar 

  58. Chen JK, Zhu J, Li JJ, Zhao JW (2019) Switching the plasmon coupling of fractional hollow AuAg nanobox by asymmetrical etching of the inner Ag core. J Phys D Appl Phys 52:255301

  59. Zhu J (2005) Theoretical study of the optical absorption properties of Au–Ag bimetallic nanospheres. Physica E 27:296–301

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11774283 and 61675162. The Zhejiang Province Basic Public Welfare Research Project (LGF20H180017) also supported this research.

Author information

Authors and Affiliations

Authors

Contributions

Qiu-Xiang Qin: methodology; investigation; data curation; writing—original draft. Jian-Jun Li: formal analysis; writing—review and editing. Jian Zhu: conceptualization; resources; writing—review and editing; supervision; funding acquisition. Guo-Jun Weng: resources; project administration; supervision. Jun-Wu Zhao: conceptualization; resources; writing—review and editing, supervision.

Corresponding authors

Correspondence to Jian-Jun Li or Jun-Wu Zhao.

Ethics declarations

Ethics Approval

This is an observational study. The XYZ Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Consent for Publication

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JJ., Qin, QX., Weng, GJ. et al. Improve the Hole Size–Dependent Refractive Index Sensitivity of Au–Ag Nanocages by Tuning the Alloy Composition. Plasmonics 17, 597–612 (2022). https://doi.org/10.1007/s11468-021-01536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01536-0

Keywords

Navigation