Skip to main content

Advertisement

Log in

How to accurately predict solution-phase gold nanostar stability

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Unwanted nanoparticle aggregation and/or agglomeration may occur when anisotropic nanoparticles are dispersed in various solvents and matrices. While extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory has been successfully applied to predict nanoparticle stability in solution, this model fails to accurately predict the physical stability of anisotropic nanostructures; thus limiting its applicability in practice. Herein, DLVO theory was used to accurately predict gold nanostar stability in solution by investigating how the choice of the nanostar dimension considered in calculations influences the calculated attractive and repulsive interactions between nanostructures. The use of the average radius of curvature of the nanostar tips instead of the average radius as the nanostar dimension of interest increases the accuracy with which experimentally observed nanoparticle behavior can be modeled theoretically. This prediction was validated by measuring time-dependent localized surface plasmon resonance (LSPR) spectra of gold nanostars suspended in solutions with different ionic strengths. Minimum energy barriers calculated from collision theory as a function of nanoparticle concentration were utilized to make kinetic predictions. All in all, these studies suggest that choosing the appropriate gold nanostar dimension is crucial to fully understanding and accurately predicting the stability of anisotropic nanostructures such as gold nanostars; i.e., whether the nanostructures remain stable and can be used reproducibly, or whether they aggregate and exhibit inconsistent results. Thus, the present work provides a deeper understanding of internanoparticle interactions in solution and is expected to lead to more consistent and efficient analytical and bioanalytical applications of these important materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu H-L, Chen C-H, Huang MH. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater. 2008;21(1):110–4.

    Article  CAS  Google Scholar 

  2. Barbosa S, Agrawal A, Rodríguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, et al. Tuning size and sensing properties in colloidal gold nanostars. Langmuir. 2010;26(18):14943–50.

    Article  CAS  PubMed  Google Scholar 

  3. Moukarzel W, Fitremann J, Marty J-D. Seed-less amino-sugar mediated synthesis of gold nanostars. Nano. 2011;3(8):3285–90.

    CAS  Google Scholar 

  4. Casu A, Cabrini E, Donà A, Falqui A, Diaz-Fernandez Y, Milanese C, et al. Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J. 2012;18(30):9381–90.

    Article  CAS  PubMed  Google Scholar 

  5. Zou X, Ying E, Dong S. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology. 2006;17(18):4758.

    Article  CAS  PubMed  Google Scholar 

  6. Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology. 2012;23(7):075102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chatterjee S, Ringane A, Arya A, Das G, Dantham V, Laha R, et al. A high-yield, one-step synthesis of surfactant-free gold nanostars and numerical study for single-molecule SERS application. J Nanopart Res. 2016;18(8):242.

    Article  CAS  Google Scholar 

  8. Sheen Mers S, Umadevi S, Ganesh V. Controlled growth of gold nanostars: effect of spike length on SERS signal enhancement. ChemPhysChem. 2017;18(10):1358–69.

  9. Bibikova O, Haas J, López-Lorente A, Popov A, Kinnunen M, Meglinski I, et al. Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst. 2017;142(6):951–8.

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Kang JW, Dasari RR, Barman I. Shedding light on the extinction-enhancement duality in gold nanostar-enhanced Raman spectroscopy. Angew Chem Int Ed. 2014;53(51):14115–9.

    Article  CAS  Google Scholar 

  11. Popov AP, Zvyagin AV, Lademann J, Roberts MS, Sanchez W, Priezzhev AV, et al. Designing inorganic light-protective skin nanotechnology products. J Biomed Nanotechnol. 2010;6(5):432–51.

    Article  CAS  PubMed  Google Scholar 

  12. Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 2016;106:87–97.

    Article  CAS  PubMed  Google Scholar 

  13. Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun. 2011;47(14):4216–8.

    Article  CAS  Google Scholar 

  14. Vega MM, Bonifacio A, Lughi V, Marsi S, Carrato S, Sergo V. Long-term stability of surfactant-free gold nanostars. J Nanopart Res. 2014;16(11):1–6.

    Article  CAS  Google Scholar 

  15. Zhao L, Ji X, Sun X, Li J, Yang W, Peng X. Formation and stability of gold nanoflowers by the seeding approach: the effect of intraparticle ripening. J Phys Chem C. 2009;113(38):16645–51.

    Article  CAS  Google Scholar 

  16. Hojo M, Yamamoto M, Okamura K. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution. PCCP. 2015;17(30):19948–56.

    Article  CAS  PubMed  Google Scholar 

  17. Rahman DS, Chatterjee H, Ghosh SK. Excess surface energy at the tips of gold nanospikes: from experiment to modeling. J Phys Chem C. 2015;119(25):14326–37.

    CAS  Google Scholar 

  18. Shiohara A, Langer J, Polavarapu L, Liz-Marzán LM. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nano. 2014;6(16):9817–23.

    CAS  Google Scholar 

  19. Chandra K, Culver KSB, Werner SE, Lee RC, Odom TW. Manipulating the anisotropic structure of gold nanostars using Good’s buffers. Chem Mater. 2016;28(18):6763–9.

    Article  CAS  Google Scholar 

  20. Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T. Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc. 2013;44(2):234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun M, Liu F, Zhu Y, Wang W, Hu J, Liu J, et al. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nano. 2016;8(8):4452–7.

    CAS  Google Scholar 

  22. D’Agostino A, Taglietti A, Bassi B, Donà A, Pallavicini P. A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars. J Nanopart Res. 2014;16(10):2683.

    Article  CAS  Google Scholar 

  23. Ramsey JD, Zhou L, Kyle Almlie C, Lange JD, Burrows SM. Achieving plasmon reproducibility from surfactant free gold nanostar synthesis. New J Chem. 2015;39(12):9098–108.

    Article  CAS  Google Scholar 

  24. Stein B, Zopes D, Schmudde M, Schneider R, Mohsen A, Goroncy C, et al. Kinetics of aggregation and growth processes of PEG-stabilised mono-and multivalent gold nanoparticles in highly concentrated halide solutions. Faraday Discuss. 2015;181:85–102.

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Lorenzo L, Álvarez-Puebla RA, de Abajo FJG, Liz-Marzán LM. Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C. 2010;114(16):7336–40.

    Article  CAS  Google Scholar 

  26. Navarro JRG, Liotta A, Faure A-C, Lerouge F, Chaput F, Micouin G, et al. Tuning dye-to-particle interactions toward luminescent gold nanostars. Langmuir. 2013;29(34):10915–21.

    Article  CAS  PubMed  Google Scholar 

  27. Dey P, Blakey I, Thurecht KJ, Fredericks PM. Self-assembled hyperbranched polymer–gold nanoparticle hybrids: understanding the effect of polymer coverage on assembly size and SERS performance. Langmuir. 2013;29(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  28. Cao G, Wang Y. Nanostructures and nanomaterials: synthesis, properties, and applications. Singapore: World Scientific; 2011.

  29. Verwey EJ, Overbeek JTG. Theory of stability of lyophobic colloids. 1st ed. Amsterdam: Elsevier; 1948.

    Google Scholar 

  30. Derjaguin B. A theory of interaction of particles in presence of electric double layers and the stability of lyophobe colloids and disperse systems. Prog Surf Sci. 1993;43(1):1–14.

    Article  Google Scholar 

  31. Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci. 1993;43(1):30–59.

    Article  Google Scholar 

  32. White LR. On the Deryaguin approximation for the interaction of macrobodies. J Colloid Interface Sci. 1983;95(1):286–8.

    Article  CAS  Google Scholar 

  33. Cai J, Raghavan V, Bai YJ, Zhou MH, Liu XL, Liao CY, et al. Controllable synthesis of tetrapod gold nanocrystals with precisely tunable near-infrared plasmon resonance towards highly efficient surface enhanced Raman spectroscopy bioimaging. J Mater Chem B. 2015;3(37):7377–85.

    Article  CAS  Google Scholar 

  34. Lu G, Forbes TZ, Haes AJ. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst. 2016;141(17):5137–43.

    Article  CAS  PubMed  Google Scholar 

  35. de Puig H, Tam JO, Yen C-W, Gehrke L, Hamad-Schifferli K. Extinction coefficient of gold nanostars. J Phys Chem C. 2015;119(30):17408–15.

    Article  CAS  Google Scholar 

  36. Ohshima H. A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci. 1994;168(1):269–71.

    Article  CAS  Google Scholar 

  37. Wijenayaka LA, Ivanov MR, Cheatum CM, Haes AJ. Improved parametrization for extended Derjaguin, Landau, Verwey, and Overbeek predictions of functionalized gold nanosphere stability. J Phys Chem C. 2015;119(18):10064–75.

  38. Pinchuk AO. Size-dependent Hamaker constant for silver nanoparticles. J Phys Chem C. 2012;116(37):20099–102.

    Article  CAS  Google Scholar 

  39. Lee K, Sathyagal AN, McCormick AV. A closer look at an aggregation model of the Stober process. Colloids Surf A. 1998;144(1–3):115–25.

  40. Vincent B, Edwards J, Emmett S, Jones A. Depletion flocculation in dispersions of sterically-stabilised particles (“soft spheres”). Colloids Surf. 1986;18(2):261–81.

    Article  CAS  Google Scholar 

  41. Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, et al. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir. 2013;29(28):8882–91.

    Article  CAS  PubMed  Google Scholar 

  42. Li A, Tang L, Song D, Song S, Ma W, Xu L, et al. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxin B1. Nano. 2016;8(4):1873–8.

    CAS  Google Scholar 

  43. Gołąbiewska A, Malankowska A, Jarek M, Lisowski W, Nowaczyk G, Jurga S, et al. The effect of gold shape and size on the properties and visible light-induced photoactivity of au-TiO2. Appl Catal B Environ. 2016;196:27–40.

    Article  CAS  Google Scholar 

  44. Leopold MC, Black JA, Bowden EF. Influence of gold topography on carboxylic acid terminated self-assembled monolayers. Langmuir. 2002;18(4):978–80.

    Article  CAS  Google Scholar 

  45. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano. 2009;3(2):418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Webb JA, Erwin WR, Zarick HF, Aufrecht J, Manning HW, Lang MJ, et al. Geometry-dependent plasmonic tunability and photothermal characteristics of multibranched gold nanoantennas. J Phys Chem C. 2014;118(7):3696–707.

    Article  CAS  Google Scholar 

  47. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–604.

    Article  CAS  PubMed  Google Scholar 

  48. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.

    Article  CAS  Google Scholar 

  49. Sobral H, Peña-Gomar M. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle. Appl Opt. 2015;54(28):8453–8.

    Article  CAS  PubMed  Google Scholar 

  50. Volkert AA, Pierre MCS, Shrestha B, Haes AJ. Implications of sample aging on the formation of internally etched silica coated gold nanoparticles. RSC Adv. 2015;5(5):3774–80.

    Article  CAS  Google Scholar 

  51. Das K, Uppal A, Gupta PK. Hyper-Rayleigh scattering and continuum generation of salt induced aggregates of silver nanoparticles: the effect of cation size (Li + , Na + and K +). Chem Phys Lett. 2006;426(1):155–8.

  52. Kim JH, Park JS, Kim MG. Time-dependent change of hyper-Rayleigh scattering from silver nanoparticle aggregates induced by salt. Chem Phys Lett. 2014;600(600):15–20.

    Article  CAS  Google Scholar 

  53. Fraire JC, Pérez LA, Coronado EA. Cluster size effects in the surface-enhanced Raman scattering response of Ag and Au nanoparticle aggregates: experimental and theoretical insight. J Phys Chem C. 2013;117(44):23090–107.

  54. Ivanov MR, Haes AJ. Anionic functionalized gold nanoparticle continuous full filling separations: importance of sample concentration. Anal Chem. 2012;84(3):1320–26.

    Article  CAS  PubMed  Google Scholar 

  55. Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal Chem. 2007;79(11):4215–21.

    Article  CAS  PubMed  Google Scholar 

  56. Hostomsky J, Jones A. Calcium carbonate crystallization, agglomeration and form during continuous precipitation from solution. J Phys D Appl Phys. 1991;24(2):165.

    Article  CAS  Google Scholar 

  57. Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39(6):1909–24.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou J, Ralston J, Sedev R, Beattie DA. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci. 2009;331(2):251–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Grace Lu for performing initial measurements relating to these studies. This work was funded by the National Science Foundation (CHE-1707859; unfunctionalized materials) and the National Institute of Environmental Health Sciences of the National Institutes of Health under award number R01ES027145 (SAM-functionalized materials).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the writing of the manuscript and gave their approval to the final version of it.

Corresponding author

Correspondence to Amanda J. Haes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Developments in Advancing Safety in Nanotechnology with guest editors Lisa Holland and Wenwan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, W., Phan, H.T. & Haes, A.J. How to accurately predict solution-phase gold nanostar stability. Anal Bioanal Chem 410, 6113–6123 (2018). https://doi.org/10.1007/s00216-018-1115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1115-6

Keywords

Navigation