Skip to main content
Log in

Dark Plasmon with a High Figure of Merit in a Single Au Triangular Nano Frame

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

As plasmonic sensors can take the advantages of the narrow width of dark mode, these sensors have been mostly investigated, and continuous efforts have been devoted to finding nanostructures with a high value of FoM. However, the FoM is ultimately limited by the ohmic loss of metal nanostructure. Based on the experimental and Drude model, the FoM is larger at the near IR range which is especially useful for biological sensors due to water’s transparency. Here, we report the SPR properties of a single Au triangular nano frame. Our results show that all plasmon bands in the examined wavelength have the characteristic of the dark modes. Moreover, we find the especial plasmon bands with high values of FoM. It originates from the anti-bonding coupling of the dipolar and quadropolar mode (ADQ mode) in a single nano frame. The FoM of this dark mode is about 45, the largest FoM’s value reported for a single nanostructure. The ADQ mode shows extreme sensitivity to the thickness of the nano frame and surrounding refractive index, which shows great promise for high sensitivity LSPR sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Jung, M. Kim, M. Kwak, G. Kim, et al., Nat. Commun. (2018) Article number: 1010.

  2. C. R. Bridges, P. M. DiCarmine, and D. S. Seferos (2012). Chem. Mater. 24, 963–965.

    Article  CAS  Google Scholar 

  3. K. D. Osberg, et al. (2014). Nano Lett. 14, 6949–6954.

    Article  CAS  Google Scholar 

  4. S. Zhang and H. Xu (2016). Nanoscale 8, 13722–13729.

    Article  CAS  Google Scholar 

  5. S. Zhang, L. Chen, Y. Huang, and H. Xu (2013). Nanoscale 5, 6985–6991.

    Article  CAS  Google Scholar 

  6. F. López-Tejeir, R. Paniagua-Domínguez, and J. A. Sánchez-Gil (2012). ACS Nano 6, 8989–8996.

    Article  Google Scholar 

  7. Y. Zhang, T. Q. Jia, S. A. Zhang, D. H. Feng, et al. (2012). Opt. Express 20, 2924–2931.

    Article  CAS  Google Scholar 

  8. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, et al. (2009). Phys. Rev. Lett. 102, 107401.

    Article  Google Scholar 

  9. A. Azarian and A. Shafiei (2018). J. Mod. Opt.. https://doi.org/10.1080/09500340.2018.1473517.

    Article  Google Scholar 

  10. J. A. Fan, K. Bao, C. Wu, J. Bao, et al. (2010). Nano Lett. 10, 4680–4685.

    Article  CAS  Google Scholar 

  11. A. Azarian (2017). Plasmonics 13, 687–695.

    Article  Google Scholar 

  12. Z. Li, R. Sun, C. Zhang, and M. Wan (2016). Opt. Express 24, 19895–19904.

    Article  CAS  Google Scholar 

  13. J. R. Greer (2014). Science 343, 1319–1320.

    Article  CAS  Google Scholar 

  14. K. Liu, X. Xue, and E. P. Furlani (2016). Sci. Rep. 6, 34189. https://doi.org/10.1038/srep34189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. A. Mahmoud and M. A. El-Sayed (2009). Nano Lett. 9, 3025–3031.

    Article  CAS  Google Scholar 

  16. Y. Sun and Y. Xia (2002). Anal. Chem. 74, 5297–5305.

    Article  CAS  Google Scholar 

  17. M. A. Mahmoud and M. A. El-Sayed (2010). J. Am. Chem. Soc. 132, 12704–12710.

    Article  CAS  Google Scholar 

  18. G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin (2003). Nano Lett. 3, 519–522.

    Article  Google Scholar 

  19. M. Tsujiab, M. Hamasaki, A. Yajima, and M. Hattori (2014). at al. Mater. Lett. 121, 113–117.

    Article  Google Scholar 

  20. G. Fletcher, M. D. Arnold, T. Pedersen, V. J. Keast, et al. (2015). Opt. Express. https://doi.org/10.1364/oe.23.018002.

    Article  PubMed  Google Scholar 

  21. M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, et al. (2013). Small 9, 2880–2886.

    Article  CAS  Google Scholar 

  22. S. A. Palkar, N. P. Ryde, M. R. Schure, and N. Gupta (1998). Langmuir 14, 3484.

    Article  CAS  Google Scholar 

  23. P. B. Johnson and R. W. Christy (1972). Phys. Rev. B 6, 4370.

    Article  CAS  Google Scholar 

  24. R. D. Averitt, S. L. Westcott, and N. J. Halas (1999). J. Opt. Soc. Am. B 16, 1824.

    Article  CAS  Google Scholar 

  25. J. Zhu (2009). Nanoscale Res. Lett. 4, 977–998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azarian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarian, A., Sheikhy, L. Dark Plasmon with a High Figure of Merit in a Single Au Triangular Nano Frame. J Clust Sci 30, 1633–1639 (2019). https://doi.org/10.1007/s10876-019-01608-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01608-6

Keywords

Navigation