Skip to main content

Advertisement

Log in

A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The ethylene-responsive element-binding factors AP2/ERF compose one of the largest families of transcription factors in plants. Dreb2-type gene from Carica papaya L. cv. Maradol was found to be a member of the AP2/ERF family and contains a conserved APETALA 2 (AP2) domain located within the group IV of the AP2/ERF superfamily. CpDreb2-type gene is differentially expressed under stress by extreme temperatures. Moreover, genetic transformation of tobacco plants that overexpress the CpDreb2-type gene showed an increase amount of proline and a greater tolerance level to low and high temperature as well as drought experiments. CpDREB2-type protein::GFP is localized mainly in the nuclei of cells from specific organs such as roots and leaves in tobacco seedlings. Our results indicate that CpDreb2-type gene can be used to gain tolerance to extreme conditions of temperature and drought in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54(2):201–212. doi:10.1007/s10535-010-0038-7

    Article  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277(2):189–198. doi:10.1007/s00438-006-0183-z

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37(2):1125–1135. doi:10.1007/s11033-009-9885-8

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14(16):2085–2096. doi:10.1101/gad.14.16.2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ 24(2):253–259. doi:10.1111/j.1365-3040.2001.00668.x

    Article  CAS  Google Scholar 

  • Bouaziz D, Charfeddine M, Jbir R, Saidi MN, Pirrello J, Charfeddine S, Bouzayen M, Gargouri-Bouzid R (2015) Identification and functional characterization of ten AP2/ERF genes in potato. Plant Cell, Tissue Organ Cult 123:155–172. doi:10.1007/s11240-015-0823-2

    Article  CAS  Google Scholar 

  • Castaño E, Vorojeikina DP, Notides AC (1997) Phosphorylation of serine-167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. Biochem J 326(Pt 1):149–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42(1):1–16. doi:10.1093/jxb/42.1.1

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30(3):239–264. doi:10.1071/FP02076

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. doi:10.1093/aob/mcn125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente T (2006) Nicotiana (Nicotiana tabaccum, Nicotiana benthamiana). agrobacterium protocols. Methods Mol Biol 343:143–154. doi:10.1385/1-59745-130-4:143

    PubMed  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornic G, Ghashghaie J, Genty B, Briantais JM (1992) Leaf photosynthesis is resistant to a mild drought stress. Photosynthetica 27(3):295–309

    CAS  Google Scholar 

  • Crafts-Brandner SJ, Van De Loo FJ, Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114(2):439–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daymi C, Pedro R, Angeles M (2005) High temperature effects on photosysthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162(3):281–289

    Article  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763. doi:10.1046/j.1365-313X.2003.01661.x

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. doi:10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81(2):77–91. doi:10.1266/ggs.81.77

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Crafs-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116(2):539–546. doi:10.1104/pp.116.2.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10(6):1043–1054. doi:10.1105/tpc.10.6.1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch MM (1993) High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult 32:205–212. doi:10.1007/BF00029844

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol (Stuttg) 6(3):269–279

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172(1):73–82. doi:10.1111/j.1469-8137.2006.01794.x

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186. doi:10.1093/nar/gkr944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682. doi:10.1093/bioinformatics/btq003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23(5):577–585. doi:10.1046/j.1365-313x.2000.00822.x

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tissue Organ Cult 117(1):17–30. doi:10.1007/s11240-013-0416-x

    Article  CAS  Google Scholar 

  • Kaiser WM (1987) Effect of water deficit on photosynthetic capacity. Physiol Plant 71(1):142–149. doi:10.1111/j.1399-3054.1987.tb04631.x

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium mediated plant transformation. Trends Plant Sci 7(5):193–195. doi:10.1016/S1360-1385(02)02251-3

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S (2007) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17(5):755–767. doi:10.1007/s11248-007-9158-z

    Article  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748. doi:10.1093/jxb/err210

    Article  CAS  PubMed  Google Scholar 

  • Lauer KJ, Boyer JS (1992) Internal CO2 measures directly in leave: abscisic acid a low leaf water potential cause opposing effects. Plant Physiol 98(4):1310–1316. doi:10.1104/pp.98.4.1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauteri M, Scartazza A, Guido MC, Brugnoli E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol 11(6):675–683. doi:10.1046/j.1365-2435.1997.00140.x

    Article  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406. doi:10.1105/tpc.10.8.1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two micro-array systems. Plant J 38(6):982–993

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom 283(2):185–196. doi:10.1007/s00438-009-0506-y

    Article  CAS  Google Scholar 

  • Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463. doi:10.1093/emboj/18.16.4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96. doi:10.1016/j.bbagrm.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  • Nagao MA, Furutani SC (1987) Improving germination of papaya seed by density separation, potassium nitrate and gibberellic acid. HortScience 21(6):1439–1440

    Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol 140(2):411–432. doi:10.1104/pp.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelleschi S, Rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20(4):493–503. doi:10.1046/j.1365-3040.1997.d01-89.x

    Article  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 50(1):54–69. doi:10.1111/j.1365-313X.2007.03034.x

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110. doi:10.1126/science.290.5499.2105

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696. doi:10.1104/pp.103.033431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009. doi:10.1006/bbrc.2001.6299

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292–1309. doi:10.1105/tpc.105.035881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103(49):18822–18827. doi:10.1073/pnas.0605639103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweet RS (1953) The quantitative determination of proline and pipecolic acid with ninhydrin. J Biol Chem 208:603–614. www.jbc.org/content/208/2/603.full.pdf

  • Shangguan Z, Shao M, Dyckmans J (1999) Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought. J Plant Physiol 154(5–6):753–758. doi:10.1016/S0176-1617(99)80254-5

    Article  CAS  Google Scholar 

  • Shi Q, Dong Y, Qiao D, Wang Q, Ma Z, Zhang F, Zhou Q, Xu H, Deng F, Li Y (2015) Isolation and characterization of ZmERF1 encoding ethylene responsive factor-like protein 1 in popcorn (Zea mays L.). Plant Cell, Tissue Org Cult 120(2):747–756. doi:10.1007/s11240-014-0644-8

    Article  CAS  Google Scholar 

  • Sievers FA, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompsom JD, Higgins D (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagûa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during watr stress and recovery. Environ Exp Bot 51(1):45–56. doi:10.1016/S0098-8472(03)00059-5

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult (PCTOC) 18(1):77–86. doi:10.1007/s11240-014-0463-y

    Article  Google Scholar 

  • Tezara W, Lawlor DW (1995) Effects of heat stress on the biochemistry and physiology of photosynthesis in sunflower. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publication, Dordrecht, pp 625–628. ISBN 978-0-7923-3862-8

    Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F, Town D (2007) Legume transcription factors: global Regulators of plant development and response to the environment. Plant Physiol 144(2):538–549. doi:10.1104/pp.107.098061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK, Gupta A, Ranjan S, Singh R, Pathre UV, Nath P, Sane AP (2014) The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS One 9(7):e101995. doi:10.1371/journal.pone.0101995

    Article  PubMed  PubMed Central  Google Scholar 

  • Wise RR, Ortiz-Lopez A, Ort DR (1992) Spatial distribution of photosynthesis during drought in field-grown and chamber grown acclimated and non-acclimated cotton. Plant Physiol 100(1):26–36. doi:10.1104/pp.100.1.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-Mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37(3):326–339. doi:10.1046/j.1365-313X.2003.01963.x

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Tsonev T, Goltsev V, Kruleva L, Velikova V (1997) Interactive effect of water deficit and high temperature on photosynthesis in sunflower and maize plants 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica 33(3–4):391–402

    CAS  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol Special issue 187–206. http://www.bio21.bas.bg/ipp/gapbfiles/essa-03/03_essa_187-206.pdf

  • Zlatev Z, Yordanov I (2004) Effects of soil drought on photosynthesis and chlorophyll fluorescence in common bean plants. Bulg J Plant Physiol 30(3–4):3–18

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Angela Ku-Gonzalez for her technical support in the fluorescence Microscopy use, and also Fernando Contreras-Martín for his agronomical support to C. papaya seedling. This work was supported by Grant from SEP-CONACYT (Numbers: 59097, 153556 and 156851). L.F. received the financial support of a scholarship (Number: 35273) from CONACyT to obtain his Ph.D. degree. A.P.S. received the financial support of a scholarship (Number: 240187) from CONACyT to obtain his Ph.D. degree. J.E.A. received the financial support of a scholarship (Number: 271006) from CONACyT to obtain his Ph.D. degree.

Author contributions

Conceived and designed the experiments: AA, LF, EC, APS, JEA, FE, LDA, RL, LR. Performed the experiments: AA, LF, EC, APS, JEA, FE. Analyzed the data: AA, LF, EC, APS, JE, FE, RL, LR. Contributed reagents/materials/analysis tools: AA, LF, EC, JS, FE, LDA, FS, LS, LR. Wrote the paper: AA, LF, EC, APS, JEA, LR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Carlos Rodríguez-Zapata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ana Arroyo-Herrera and Luis Figueroa-Yáñez authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2015_934_MOESM1_ESM.tif

S1 Fig. Multiple alignment of predicted DREB2-type protein from Carica papaya, and the DREB2-related proteins from different plants. Sequences were aligned using ClustalW2 and identical or similar amino acids were shaded by BOXSHADE (see Materials and Methods). The AP2/ERF domain is indicated as a blue square, CMIV-2 motif as a green square, CMIV-1 motif as an orange square and CMIV-3 motif as a red square, respectively. Black shading-identical residues; grey shading-similar residues. The following DREB2A protein sequences (abbreviation and accession number in parenthesis) were compared: Glycine max (GmDREB2A:AFU35563.1); Helianthus annuus (H. annuus:AAS82861.1); Arabidopsis thaliana (A. thaliana_1:O82132.1; A. thaliana_2:NP_196160.1; (A. thaliana_3:NP_001031837.1); Oryza sativa (O. sativa:Q0JQF7.1); Zea mays (Z. mays:NP_001105876.1) and Cenchrus americanus (C. americanus:ABB05044.1). (TIFF 1096 kb)

11240_2015_934_MOESM2_ESM.pdf

S2 Fig. The sequence logos of different CMIV motif and AP2/ERF domain of the CpDREB2-type gene showed that several amino acids are conserved at a specific position. Each logo consists on stack of letters, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the letter’s height within the stack indicates the relative information content of each amino acid at that position. The amino acid color code is blue for amino acids positive electrically charged, green for polar amino acids (hydrophilic), yellow for nonpolar amino acids, and red for amino acids negative electrically charged. (PDF 748 kb)

S3 Fig. Verification of plant transformation with CpDRED2-type gene by PCR using genomic DNA. (TIFF 1789 kb)

Supplementary material 4 (PDF 13 kb)

Supplementary material 5 (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Herrera, A., Figueroa-Yáñez, L., Castaño, E. et al. A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell Tiss Organ Cult 125, 119–133 (2016). https://doi.org/10.1007/s11240-015-0934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0934-9

Keywords

Navigation