Skip to main content

Advertisement

Log in

Microalgae: a promising tool for carbon sequestration

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10–20 % in comparison with 1–2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energ 27(11):1195–1208

    Article  Google Scholar 

  • Anderson RA (2005) Algal cultural techniques. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Bayless DJ, Kremer GG, Prudich ME, Stuart BJ, Vis-Chiasson ML, Cooksey K, Muhs J (2001) Enhanced practical photosynthetic CO2 mitigation. Proceedings of the first national conference on carbon sequestration 5A4:1–14

  • Becker EW (ed) (1994) Microalgae biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Benemann J (1997) CO2 mitigation with microalgal systems. Energ Convers Manage 38:475–479

    Article  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economics analysis of microalgae ponds for conversion of CO2 to biomass. US Department of Energy, Pittsburg, pp 42–65

    Book  Google Scholar 

  • Berberoglu H, Gomez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J Quant Spectrosc 110:1879–93

    Article  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis. Energ Convers Manag 50(2):262–267

    Article  Google Scholar 

  • Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548

    Article  Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-010-9271-9

  • Boyd PW et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extraction of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  Google Scholar 

  • Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energ Convers Manage 37(6–8):1363–1367

    Article  Google Scholar 

  • Buesseler KO, Doney SC, Karl DM et al (2008) Ocean iron fertilization moving forward in a sea of uncertainty. Science 319:162–163

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of ecosystems of ecology. Springer, New York

    Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–60

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78

    Article  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energ 88:3524–3531

    Article  Google Scholar 

  • de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. And Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  Google Scholar 

  • de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manage 48(7):2169–2173

    Article  Google Scholar 

  • Del Campo JA, Garcia-Gonzales M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–117

    Article  Google Scholar 

  • Dhingra R, Ahluwalia AS (2007) Genus Phormidium kutzing ex Gomont (Cyanoprokaryote) from diverse habitats of Punjab. J Indian Bot Soc 86(3&4):86–94

    Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117

    Article  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwater Science, London, p 375

    Google Scholar 

  • Feely RA, Orr JC, Fabry VJ, Kleypas JA, Sabine CL, Landgon C (2009) Present and future changes in seawater chemistry due to ocean acidification. In: Mcpherson BJ, Sundquist ET (eds) AGU Monograph on carbon sequestration and its role in the global carbon cycle

  • Fernández FGA, Camacho FG, Pérez JAS, Sevilla JMF, Grima EM (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58(6):605–616

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240

    Article  Google Scholar 

  • Folger P (2009) The carbon cycle: Implications for climate change and congress. Congressional Research Service Report RL34059, pp. 7–57

  • Gough C (2008) State of the art in carbon dioxide capture and storage in the UK: an experts’ review. Int J Greenhouse Gas Control 2:155–168

    Article  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Gribbin J (1988) Any old iron? Nature 331:570

    Article  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the open versus closed debate. J Appl Phycol 21:489–492

    Article  Google Scholar 

  • Hader DP, Figueroa FL (1997) Photophysiology of marine microalgae. J Photochem Photobiol 66:1–14

    Article  Google Scholar 

  • Hall DO, Fernández AFG, Guerrero CE, Rao KK, Grima ME (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    Article  Google Scholar 

  • Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46:799–809

    Article  Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochem 31(10):3345–3348

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–47

    Article  Google Scholar 

  • Hase R, Oikawa H, Sasso C, Morito M, Watabe Y (2000) Photosynthetic production of microalgal biomass in a race way system under greenhouse conditions in Sendi City. J Biosci Bioeng 89:157–163

    Article  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquacult Res 31:637–659

    Article  Google Scholar 

  • Herzog HJ, Drake EM (1996) Carbon dioxide recovery and disposal from large energy systems. Annu Rev Energ Env 21:145–166

    Article  Google Scholar 

  • Herzog H, Drake E, Adams E (1997) CO2 Capture, re-use and storage technologies for mitigating global climate change. White paper final report, Public Energy Laboratory, Massachusetts Institute of Technology, US Department of Energy Order No: DE-AF22-96PC01257

  • Hirata S, Hayashitani M, Taya M, Tone S (1996) Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight collection device. J ferment bioeng 81(5):470–472

    Article  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strategies Glob Chang 12(4):573–608

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghiradi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Houghton JT, Ding Y, Griggs DJ, Nouger M, van der Linden PJ, Xiaosu D (eds) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007a) Mitigation of climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) The physical science basis. In: Solomon SD, Qin D, Manning M, Chen Z, Marquie M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Forth assessment report of the IPCC on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Franco TT (2008) Rates of CO2 removal by a Aphanothece microscopica Nageli in tubular photobioreactors. Chem Eng Process 47:1371–9

    Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manage 51:894–900

    Article  Google Scholar 

  • Jenny H (1980) The soil resource: origin and behaviour. Springer, New York

    Google Scholar 

  • Jeong MJ, Gillis JM, Hwang JY (2003) Carbon dioxide mitigation by microalgal photosynthesis. Bull Korean Chem Soc 24(12):1763–1766

    Article  Google Scholar 

  • Kativu E, Hildebrandt D, Matambo T, Glasser D (2011) Fresh water microalgae growth. Environ Prog Sustain Energy. doi:10.1002/ep.10600

  • Kaya Y (1989) A grand strategy for global warming. Paper presented at Tokyo Conference on global environment, Tokyo, Japan, 11–13 September 1989

  • Kumar A, Ergas S, Yuan X, Sahu A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactor for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953

    Article  Google Scholar 

  • Kusmic C, Barsacchi R, Barsanti L, Gualteri P, Passarelli V (1999) Euglena gracilis as a source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559

    Article  Google Scholar 

  • Lal R, Kimble J, Follett R (1998) Land use and soil carbon pools in terrestrial ecosystems. In: Lal R, Kimble J, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. CRC Lewis Publishers, Boca Raton

    Google Scholar 

  • Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD, Kelly-Gerreyn BA, Lucas M, Popova EE, Sanders R, Shepherd JG, Smythe-Wright D, Yool A (2008) Ocean fertilization: a potential means of geoengineering? Philos Transact A Math Phys Eng Sci 366(1882):3919–3945

    Article  Google Scholar 

  • Laws EA, Berning JL (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases. Biotechnol bioeng 37(10):936–947

    Article  Google Scholar 

  • Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys Discuss 9:2559–2608

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  Google Scholar 

  • Li J, Xu SN, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J 14(1):51–65

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    Google Scholar 

  • Lopez CVG, Fernandez FGA, Sevilla JMF, Fernandez JFS, Garcia MCC, Grima EM (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in carbon dioxide removal processes. Bioresour Technol 100:5904–5910

    Article  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energ Convers Manage 36:717–720

    Article  Google Scholar 

  • Marchetti E (1977) On geoengineering and the CO2 problem. Climate Change 1(1):59–68

    Article  Google Scholar 

  • Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  Google Scholar 

  • Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn 30:620–624

    Article  Google Scholar 

  • Meinshausen MN, Hare MW, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162

    Article  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Miura Y, Yamada W, Hirata K, Miyamoto K, Kiyohara M (1993) Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Appl biochem biotechnol 39(40):753–761

    Article  Google Scholar 

  • Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy convers manage 36(6–9):763–766

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77(2):155–162

    Article  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Biores Technol 96:451–458

    Article  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  Google Scholar 

  • Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J ferment bioeng 86(4):421–423

    Article  Google Scholar 

  • Nakano Y, Miyatake K, Okuno H, Hamazaki K et al (1996) Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Horticulturae 440(9):49–54

    Google Scholar 

  • Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH et al (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234

    Article  Google Scholar 

  • Oilgae (2011). Oilgae report. The comprehensive guide for algae-based Carbon Capture. http://www.oilgae.com/ref/report/download.php?name=The_Comprehensive_Guide_for_Algae-based_Carbon_Capture.pdf. Cited 21 Mar 2012

  • Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. In: proceedings of the 2nd annual conference on carbon sequestration, alexandria, pp 1–7

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL Jr, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog 25(2):492–498

    Article  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy 37:3428–3437

    Article  Google Scholar 

  • Patil V, Reitan KI, Knudsen G, Mortensen L, Kallqvist T, Olsen E, Vogt G, Gislerod HR (2005) Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6:57–65

    Google Scholar 

  • Pielke JRA (2009) An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy. Environmental Science & Policy 12(3):216–225

    Article  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053

    Article  Google Scholar 

  • Pirt SJ (1983) Maximum photosynthetic efficiency: a problem to be resolved. Biotechnol Bioeng 24:1915–1922

    Article  Google Scholar 

  • Pirt SJ, Lee YK, Richmond A, Pirt MW (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34

    Article  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–77

    Article  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  Google Scholar 

  • Rados S, Vaclav B, Frantisek D (1975) CO2 balance in industrial cultivation of algae. Arch Hydrobiol 46(12):297–310

    Google Scholar 

  • Raja R, Hemaiswarya S, Kumar AN, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77

    Article  Google Scholar 

  • Richmond A, Zou N (1999) Efficient utilization of high photon irradiance for mass production of photo autotrophic micro-organisms. J Appl Phycol 11:123–127

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  • Rogelj J, Hare W, van Vuuren DP, Riahi K, Matthews B, Hanoaka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2°C global temperature limit. Nature Climate Change 1:413–418

    Article  Google Scholar 

  • Royal Society (2008) Sustainable biofuels: Prospects and challenges. Policy document 01/08, 978 0 85403 662 2

  • Royal Society (2009) Geoengineering the climate: Science, governance and uncertainty. Report 10/09, 978 0 85403 773 5

  • Safonova E, Kvitko KV, Iankevitch MI et al (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4:347–353

    Article  Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energ Convers Manage 36:693–696

    Article  Google Scholar 

  • Sankar V, David K, Krastanov A (2011) Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnol Biotechnol Eq 25(3):2468–2476

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurement. Global Change Biol 8:736

    Article  Google Scholar 

  • Seckbach J, Gross H, Nathan MB (1971) Growth and Photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel J Bot 20:84–90

    Google Scholar 

  • Sidhu MA, Ahluwalia AS (2011) Water quality & cyanobacterial diversity in lower western Himachal lakes. Vegetos 24(2):165–170

    Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  Google Scholar 

  • Smetacek V, Naqvi SWA (2008) The next generation of iron fertilization experiments in the Southern Ocean. Philosophical Transactions of the Royal Society A 366(1882):3947–3967

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae- review. J Biosci Bioeng 101:87–96

    Article  Google Scholar 

  • Steinberg M (1984) An analysis of concepts for controlling atmospheric carbon dioxide, Report DOE/CH/00016-1. Brookhaven National Laboratory, Brookhaven

    Google Scholar 

  • Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Convers Manage 46:403–20

    Article  Google Scholar 

  • Strong AS, Miller CC, Cullen J (2009) Ocean fertilization: time to move on. Nature 461(17):347–348

    Article  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energ Policy 38:5892–5901

    Article  Google Scholar 

  • Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in iran. Renew Sust Energ Rev 15:1918–1927

    Article  Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–333

    Article  Google Scholar 

  • Tapie P, Bernard A (1988) Microalgae production technical and economic evaluations. Biotechnol Bioeng 32(7):873–885

    Article  Google Scholar 

  • Taylor G (2008) Biofuels and biorefinery concept. Energ Policy 36:4406–4409

    Article  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    Google Scholar 

  • Tsuda A et al (2003) A mesoscale iron enrichment in the western subarctiv Pacific induces a large centric diatom bloom. Science 300:958–961

    Article  Google Scholar 

  • USDOE (2009) National Algal Biofuel Technology Roadmap. Biomass Program/https://ecenter.doe.gov/iips/faopor.nsf/UNID/79E3ABCACC9AC14A852575CA00799D99/$file/AlgalBiofuels_Roadmap_7.pdfS. Cited 12 Feb 2010

  • Vasudevan P, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35(5):421–430

    Article  Google Scholar 

  • Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–18

    Article  Google Scholar 

  • Wang LA, Min M, Li YC, Chen P, Chen YF, Liu YH et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–86

    Article  Google Scholar 

  • Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26(1):26–31

    Article  Google Scholar 

  • WorldBankReport (2011) State and trends of the carbon market 2010. Washington DC, p 16

  • Xia J, Gao K (2003) Effects of doubled atmospheric CO2 concentration on the photosynthesis and growth of Chlorella pyrenoidosa cultured at varied levels of light. Fisheries Sci 69(4):767–771

    Article  Google Scholar 

  • Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energ Convers Manage 46:1868–1876

    Article  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee C, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Tech Biotechnol 69:451–455

    Article  Google Scholar 

  • Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuelfired power plant flue gas. Energy Convers Mgmt 36(6–9):707–712

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chairperson, Department of Botany, Panjab University, Chandigarh for providing necessary research facilities, University Grants Commission, New Delhi for SAP-DRS-II grants and to the Council of Scientific and Industrial Research, New Delhi (U. B. Singh) for providing financial assistance in the form of Junior Research Fellowship and Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ahluwalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, U.B., Ahluwalia, A.S. Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Change 18, 73–95 (2013). https://doi.org/10.1007/s11027-012-9393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-012-9393-3

Keywords

Navigation