Skip to main content

Advertisement

Log in

CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The only major strategy now being seriously considered for biological mitigation of atmospheric CO2 relies entirely on terrestrial plants. Photosynthetic microbes were the focus of similar consideration in the 1990s. However, two major government-sponsored research programs in Japan and the USA concluded that the requisite technology was not feasible, and those programs were terminated after investing US$117 million and US$25 million, respectively. We report here on the results of a privately funded US$20 million program that has engineered, built, and successfully operated a commercial-scale (2 ha), modular, production system for photosynthetic microbes. The production system couples photobioreactors with open ponds in a two-stage process – a combination that was suggested, but never attempted – and has operated continuously for several years to produce Haematococcus pluvialis. The annually averaged rate of achieved microbial oil production from H. pluvialis is equivalent to <420 GJ ha -1 yr-1, which exceeds the most optimistic estimates of biofuel production from plantations of terrestrial ``energy crops.'' The maximum production rate achieved to date is equivalent to 1014 GJ ha-1 yr-1. We present evidence to demonstrate that a rate of 3200 GJ ha-1 yr-1 is feasible using species with known performance characteristics under conditions that prevail in the existing production system. At this rate, it is possible to replace reliance on current fossil fuel usage equivalent to ∼300 EJ yr-1 – and eliminate fossil fuel emissions of CO2 of ∼6.5 GtC yr-1 – using only 7.3% of the surplus arable land projected to be available by 2050. By comparison, most projections of biofuels production from terrestrial energy crops would require in excess of 80% of surplus arable land. Oil production cost is estimated at $84/bbl, assuming no improvements in current technology. We suggest enhancements that could reduce cost to $50/bbl or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acién Fernández, F.G., García Camacho, F., Sánchez Pérez, J.A., Fernández Sevilla, J.M. and Molina Grima, E.: 1998, ‘Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance’, Biotechnology and Bioengineering 58(6), 605–616.

    Article  Google Scholar 

  • Allen, E.J. and Nelson, E.W.: 1910, ‘On the artificial culture of marine plankton organisms’, Journal of the Marine Biological Association of the U.K. 8, 421–474.

    Article  Google Scholar 

  • Amthor, J.S. and Huston, M.A. (eds.): 1998, Terrestrial Ecosystem Responses to Global Change: A Research Strategy, Oak Ridge, TN, Oak Ridge National Laboratory, 37 pp.

    Google Scholar 

  • Barclay, W., Johansen, J., Chelf, P., Nagle, N., Roessler, P. and Lemke, P.: 1986, Microalgae Culture Collection 1986–87, Golden, Colorado, USA, Solar Energy Research Institute, SERI/SP-232-3079, 147 pp.

    Google Scholar 

  • Becker, E.W.: 1978, Microalgae: Findings of three experimentation projects, Eschborn, Germany, Deutsche Gesellschaft für Technische Zusammenarbeit, Schrifternreihe der GTZ No. 143, 94 pp.

  • Benemann, J.: 1989, ‘The future of microalgal biotechnology’, in R.C. Cresswell, T.A.V. Rees and N. Shah (eds.), Algal and Cyanobacterial Biotechnology, Harlow, UK, Longman Scientific and Technical, pp. 317–337.

    Google Scholar 

  • Benemann, J. and Oswald, W.J.: 1996, Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass, Pittsburgh Energy Technology Center, Final Report, Grant No. DE-FG22-93PC93204.

  • Benemann, J., Goebel, R.P., Weissman, J.C. and Augenstein, D.C.: 1982, Microalgae as a Source of Liquid Fuels, Washington, DC, US Department of Energy, 202 pp.

    Google Scholar 

  • Berndes, G., Hoogwijk, M. and van den Broek, R.: 2003, ‘The contribution of biomass in the future global energy supply: A review of 17 studies’, Biomass and Bioenergy 25, 1–28.

    Article  Google Scholar 

  • Beyerinck, M.W.: 1890, ‘Culturversuche met zoochlorellen’, Lichenengonidien und Anderen Niederen Algen Botanische Zeitung 48, 724–739, 741–754, 757–768, 781–785.

    Google Scholar 

  • Bischoff, H.W. and Bold, H.C.: 1963, Phycological Studies. IV. Some Algae From Enchanted Rock and Related Algal Species, University of Texas, Publication 6318, 95 pp.

  • Borowitzka, L.J.: 1999, ‘Commercial production of microalgae: Ponds, tanks, tubes and fermenters’, Journal of Biotechnology 70, 313–321.

    Article  Google Scholar 

  • Borowitzka, L.J., Borowitzka, M.A. and Moulton, T.P.: 1984, ‘The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant’, Hydrobiologia 116/117, 115–134.

    Article  Google Scholar 

  • Borowitzka, M.A.: 1996, ‘Closed algal photobioreactors: Design considerations for large-scale systems’, Journal of Marine Biotechnology 4, 185–191.

    Google Scholar 

  • Boussiba, S.: 2000, ‘Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response’, Physiologia Plantarum 108, 111–117.

    Article  Google Scholar 

  • Brown, A.D. and Borowitzka, L.J.: 1979, ‘Halotolerance of Dunaliella’, in M. Levandowsky and S.H. Hutner (eds.), Biochemistry and Physiology of Protozoa, New York, Academic Press, Vol. 1, pp. 139–190.

    Google Scholar 

  • Bubrick, P.: 1991, ‘Production of astaxanthin from Haematococcus’, Bioresource Technology 38, 237–239.

    Article  Google Scholar 

  • Burgess, J.G., Iwamoto, K., Miura, Y., Takano, H. and Matsunaga, T.: 1993, ‘An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX-LB2307) rich in docosahexaenoic acid’, Applied Microbiology and Biotechnology 39(4–5), 456–459.

    Article  Google Scholar 

  • Burlew, J.S.: 1953, Algal Culture From Laboratory to Pilot Plant, Washington, DC, Carnegie Institute of Washington, 357 pp.

    Google Scholar 

  • Chisholm, S.W., Falkowski, P.G. and Cullen, J.J.: 2001, ‘Dis-crediting ocean fertilization’, Science 294, 309–310.

    Article  Google Scholar 

  • Darmstadter, J.: 2003, The Economic and Policy Setting of Renewable Energy: Where Do Things Stand?, Washington, DC, Resources for the Future, 21 pp. Available from http://www.rff.org/ rff/Documents/RFF-DP-03-64.pdf

  • Dugan, G.L.: 1980, Algal Mass Culture: Principles, Procedures and Prospects, Hawaii Natural Energy Institute, Honolulu, University of Hawaii, pp. 1–54.

    Google Scholar 

  • Dunahay, T.G., Jarvis, E.E. and Roessler, P.G.: 1995, ‘Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila’, Journal of Phycology 31(6), 1004–1012.

    Article  Google Scholar 

  • Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G.: 1996, ‘Manipulation of microalgal lipid production using genetic engineering’, Applied Biochemistry and Biotechnology 57–58, 223– 231.

    Google Scholar 

  • Dyni, J.R.: 2003, ‘Geology and resources of some world oil-shale deposits’, Oil Shale 20(3), 193–252.

    Google Scholar 

  • Edmonds, J.A.: 2004, ‘Climate change and energy technologies’, Mitigation and Adaptation Strategies for Global Change 9(4), 391–416.

    Article  Google Scholar 

  • EIA: 1999, International Energy Outlook, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0484(1999).

    Google Scholar 

  • EIA: 2003a, Annual Energy Outlook 2003, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0383 (2003).

    Google Scholar 

  • EIA: 2003b, Annual Energy Outlook 2003: Natural Gas, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0484(2003).

    Google Scholar 

  • El-Fouly, M.M., Abdalla, F.E., Saleh, A.M., Shaheen, A.B. and El-Baz, F.K.: 1984, ‘Technological and biochemical studies on mass production of algae in Egypt’, Archiv für Mikrobiologie Supplement 37, 461–478.

    Google Scholar 

  • Eppley, R.W.: 1972, ‘Temperature and phytoplankton growth in the sea’, Fisheries Bulletin 70, 1063–1085.

    Google Scholar 

  • EWEA: 2004, Global Wind Power Growth Continues to Strengthen: Recordeuro8 Billion Wind Power Installed in 2003. Available from http://www.ewea.org/documents/.pdf

  • Fábregas, J., Maseda, A., Domínguez, A. and Otero, A.: 2004, ‘The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture’, World Journal of Microbiology and Biotechnology 20(1), 31–35.

    Article  Google Scholar 

  • Fábregas, J., Dominguez, A., Regueiro, M., Maseda, A. and Otero, A.: 2000, ‘Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis’, Applied Microbiology and Biotechnology 53(5), 530–535.

    Article  Google Scholar 

  • Falkowski, P. and LaRoche, J.: 1991, ‘Minireview: Acclimation to spectral irradiance in algae’, Journal of Phycology 27, 8–14.

    Article  Google Scholar 

  • Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A. and Herrero, C.: 1998, ‘Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana’, Aquaculture 166(1–2), 105–116.

    Article  Google Scholar 

  • Fischer, G. and Schrattenholzer, L.: 2001, ‘Global bioenergy potentials through 2050’, Biomass and Bioenergy 20, 151–159.

    Article  Google Scholar 

  • Frantzis, L.: 2003, Global Power Markets: Why Should the U.S. Care?, Third Energy Analysis Forum, Arlington, VA, USA. Available from http://www.nrel.gov/analysis/pdfs/lisa frantzis.pdf.

  • Gaffron, H. and Rubin, J.: 1942, ‘Fermentative and photochemical production of hydrogen in algae’, Journal of General Physiology 20, 219–240.

    Article  Google Scholar 

  • Goldman, J.C.: 1979, ‘Outdoor algal mass cultures-I. Applications’, Water Research 13, 1–13.

    Article  Google Scholar 

  • Gummert, F., Meffert, M.E. and Stratmann, H.: 1953, ‘Non-sterile large-scale culture of Chlorella in greenhouse and open air’, in J.S. Burlew (ed.) Algal Culture From Laboratory to Pilot Plant, Washington, DC, Carnegie Institution of Washington, Publication No. 600, pp. 166–176.

    Google Scholar 

  • Hall, D.O., Rosillo-Calle, F., Williams, R.H. and Woods, J.: 1993, ‘Biomass for energy: Supply prospects’, in T.B. Johansson, H. Kelly, A.K.N. Reddy, R.H. Williams and L. Burnham (eds.), Renewable Energy: Sources for Fuels and Electricity, Washington, DC, Island Press, pp. 593– 651.

    Google Scholar 

  • Hall, D.O., Fernandez, F.G.A., Guerrero, E.C., Rao, K.K. and Grima, E.M.: 2003, ‘Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass’, Biotechnology and Bioengineering 82(1), 62–73.

    Article  Google Scholar 

  • Hallenbeck, P.C. and Benemann, J.: 2002, ‘Biological hydrogen production; fundamentals and limiting processes’, International Journal of Hydrogen Energy 27, 1185–1193.

    Article  Google Scholar 

  • Hu, Q., Guterman, H. and Richmond, A.: 1996a, ‘A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs’, Biotechnology and Bioengineering 51(1), 51–60.

    Article  Google Scholar 

  • Hu, Q., Guterman, H. and Richmond, A.: 1996b, ‘Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities’, Journal of Phycology 32, 1066–1073.

    Article  Google Scholar 

  • Huntley, M.E., Niiler, P. and Redalje, D.: 1996, ‘Method of control of microorganism growth process’, U.S. Patent No. 5,541,056.

  • Huntley, M.E., Wahlberg, D., Redalje, D. and Jordan, J.: 1997, ‘Process and apparatus for the production of photosynthetic microbes’, European Patent No. 0-494-887.

  • Huntley, M.E., Niiler, P., Redalje, D. and Leonard, A.: 1999, ‘Method of control of Haematococcus spp. growth process’, US Patent No. 5,882,849.

  • IEA: 1998, World Energy Outlook – 1998 Update, Paris, France, International Energy Agency/OECD.

    Google Scholar 

  • Illman, A.M., Scragg, A.H. and Shales, S.W.: 2000, ‘Increase in Chlorella strains calorific values when grown in low nitrogen medium’, Enzyme and Microbial Technology 27(8), 631–635.

    Article  Google Scholar 

  • Construction, I.W.P.a.D. International Water Power and Dam Construction Yearbook: 1997, Sidcup, Kent, UK, Wilmington Media.

  • IPCC: 1995, ‘Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analyses. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change’, in R.T. Watson, M.C. Zinyowera and R.H. Moss (eds.), Cambridge, UK, Cambridge University Press.

    Google Scholar 

  • IPCC: 2001a, ‘Climate change 2001: Synthesis report. A contribution of working groups I, II and III to the third assessment report of the intergovernmental panel on climate change’, in R.T. Watson and the Core Writing Team (eds.), Cambridge, UK, Cambridge University Press, 398 pp.

    Google Scholar 

  • IPCC: 2001b, ‘Climate change 2001: Mitigation. Contribution of working group III to the third assessment report of the intergovernmental panel on climate change’, in B. Metz, O. Davidson, R. Swart and J. Pan (eds.), Cambridge, UK, Cambridge University Press, 751 pp.

    Google Scholar 

  • IPCC: 2001c, ‘Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change’, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (eds.), Cambridge, UK, Cambridge University Press, 881 pp.

    Google Scholar 

  • Janssen, M., Tramper, J., Mur, L.R. and Wijffels, R.H.: 2003, ‘Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects’, Biotechnology and Bioengineering 81(2), 193–210.

    Article  Google Scholar 

  • Jassby, A.: 1988, ‘Some public health aspects of microalgal products’, in C.A. Lembi (ed.), Algae and Human Affairs, Cambridge, UK, Cambridge University Press, pp. 181–183.

    Google Scholar 

  • Jimenez, C., Cossio, B.R. and Niell, F.X.: 2003, ‘Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield’, Aquaculture 221(1–4), 331–345.

    Article  Google Scholar 

  • Johansson, T.B., Kelly, H., Reddy, A.K.N. and Williams, R.H.: 1993, ‘A renewables-intensive global energy scenario’, in L. Burnham (ed.), Renewable Energy: Sources for Fuels and Electricity, Washington, DC, Island Press, pp. 1071–1143.

    Google Scholar 

  • Johnston, H.W.: 1976, ‘The biological and economic importance of algae. Part 4: The industrial culturing of algae’, Tuatara 22, 1–114.

    Google Scholar 

  • Kanazawa, T., Fujita, C., Yuhara, T. and Sasa, T.: 1958, Mass culture of unicellular algae using the ‘open circulation method’, Journal of General and Applied Microbiology 4, 135–152.

    Google Scholar 

  • Ketchum, B.H. and Redfield, A.C.: 1938, ‘A method for maintaining a continuous supply of marine diatoms in culture’, Biological Bulletin 75, 165–169.

    Google Scholar 

  • Ketchum, B.H., Lillick, L. and Redfield, A.C.: 1949, ‘The growth and optimum yields of unicellular algae in mass culture’, Journal of Cellular Comparative Physiology 33, 267–279.

    Article  Google Scholar 

  • Kirk, J.T.O.: 1994, Light and Photosynthesis in Aquatic Ecosystems, Cambridge, UK, Cambridge University Press, 509 pp.

    Google Scholar 

  • Laing, I. and Ayala, F.: 1990, ‘Commercial mass culture techniques for producing microalgae’, in I. Atasuka (ed.), Introduction to Applied Phycology, The Hague, Netherlands, SPB Academic Publishing, pp. 447–477.

    Google Scholar 

  • Laws, E.A., Taguchi, S., Hirata, J. and Pang, L.: 1986, ‘High algal production rates achieved in a shallow outdoor flume’, Biotechnology and Bioengineering 28, 191–197.

    Article  Google Scholar 

  • Lazarus, M., Greber, L., Hall, J., Bartels, C., Bernow, S., Hansen, E., Raskin, P. and von Hippel, D.: 1993, Towards a Fossil Free Energy Future, Boston, Stockholm Environmental Institute – Boston Center.

    Google Scholar 

  • Lee, Y.K.: 2001, ‘Micoalgal mass culture systems and methods: Their limitation and potential’, Journal of Applied Phycology 13, 307–315.

    Article  Google Scholar 

  • Leemans, R., van Amstel, A., Battjes, C., Kreileman, E. and Toet, S.: 1996, ‘The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source’, Global Environmental Change 6(4), 335–357.

    Article  Google Scholar 

  • León-Bañares, R., González-Ballester, D., Galván, A. and Fernández, E.: 2004, ‘Transgenic microalgae as green cell-factories’, Trends in Biotechnology 22(1), 45–52.

    Article  Google Scholar 

  • Lewin, R.A.: 1985, Production of Hydrocarbons by Micro-Algae: Isolation and Characterization of New and Potentially Useful Algal Strains, Golden, Colorado, USA, Solar Energy Research Institute, SERI/CP-231-2700, pp. 43–51.

    Google Scholar 

  • Lien, S. and San Pietro, A.: 1976, Inquiry Into the Biophotolysis of Water to Produce Hydrogen, Washington, DC, National Science Foundation, NSF/RA-760417, 58 pp.

    Google Scholar 

  • Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C.: 1995, ‘An estimate of global primary production in the ocean from satellite radiometer data’, Journal of Plankton Research 17, 1245–1271.

    Google Scholar 

  • Ma, F. and Hanna, M.A.: 1999, ‘Biodiesel production: A review’, Bioresource Technology 70, 1–15.

    Article  Google Scholar 

  • Martin, J.H.: 1990, ‘A new iron age, or a ferric fantasy’, US JGOFS Newsletter 1(4), 5–6.

    Google Scholar 

  • Martin, J.H.: 1991, ‘Iron, Liebig's Law, and the greenhouse’, Oceanography 4, 52–55.

    Google Scholar 

  • Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Niura, S., Takano, H., Hirano, M., Burgess, J.G., Sode, K. and Nakamura, N.: 1991, ‘Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel photobioreactor employing light-diffusing optical fiber’, Applied Biochemistry and Biotechnology 28/29, 157–167.

    Article  Google Scholar 

  • Melis, A., Neihardt, J. and Benemann, J.: 1999, ‘Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells’, Journal of Applied Phycology 10, 515–525.

    Article  Google Scholar 

  • Morita, T., Nakicenovic, N. and Robinson, J.: 2000, ‘Overview of mitigation scenarios for global climate stabilization based on New IPCC Emission Scenarios (SRES)’, Environmental Economics and Policy Studies 3(2).

    Google Scholar 

  • Morita, T., Watanabe, Y. and Saiki, H.: 2002, ‘Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions’, Biotechnology and Bioengineering 77(2), 155–162.

    Article  Google Scholar 

  • Murakami, M. and Ikenouchi, M.: 1997, ‘The biological CO2 fixation and utilization project by RITE. 2. Screening and breeding of microalgae with high capability in fixing CO2’, Energy Conversion and Management 38(Suppl.), 493–498.

    Article  Google Scholar 

  • Myers, J. and Clark, L.B.: 1944, ‘Culture conditions and the development of the photosynthetic mechanism – II. An apparatus for the continuous culture of Chlorella’, Journal of General Physiology 28, 103–112.

    Article  Google Scholar 

  • Nakajima, Y. and Itayama, T.: 2003, ‘Analysis of photosynthetic activity of microalgal mass cultures’, Journal of Applied Phycology 15, 497–505.

    Article  Google Scholar 

  • Nakicenovic, N., Grübler, A. and McDonald, A. (eds.): 1998, Global Energy Perspectives, Cambridge, UK, Cambridge University Press, 299 pp.

    Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, H.J.M., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Papper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. and Dadi, Z.: 2000, Special Report on Emissions Scenarios. Intergovernmental Panel on Climate Change, Cambridge, UK, Cambridge University Press.

    Google Scholar 

  • Nishikawa, N., Koyu, H.N., Hirano, A., Ikuta, Y., Hukuda, Y., Negoro, M., Kaneko, M. and Hada, M.: 1992, ‘Reduction of carbon dioxide emission from flue-gas with microalgae cultivation’, Energy Conversion and Management 33(5–8), 553–560.

    Article  Google Scholar 

  • Olaizola, M.: 2000, ‘Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 liter photobioreactors’, Journal of Applied Phycology 12, 499–506.

    Article  Google Scholar 

  • Olaizola, M.: 2003, ‘Commercial development of microalgal biotechnology: From the test tube to the marketplace’, Biomolecular Engineering 20, 459–466.

    Article  Google Scholar 

  • Oswald, W.J.: 1973, ‘Complete waste treatment in ponds’, in S.H. Jenkins (ed.), Progress in Water Technology. Vol. 3. Water Quality: Management and Pollution Control Problems, Oxford, UK, Pergamon Press, pp. 153–163.

    Google Scholar 

  • Oswald, W.J. and Golueke, C.G.: 1960, ‘Biological transformations of solar energy’, Advances in Applied Microbiology 2, 223–262.

    Article  Google Scholar 

  • Otero, A. and Fábregas, J.: 1997, ‘Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates’, Aquaculture 159(1–2), 111–123.

    Article  Google Scholar 

  • Paustian, K., Cole, C.V., Sauerbeck, D. and Sampson, N.: 1998, ‘CO2 mitigation by agriculture: An overview’, Climatic Change 40, 135–162.

    Article  Google Scholar 

  • Pearson, P.N. and Palmer, M.R.: 2000, ‘Atmospheric carbon dioxide concentrations over the past 60 million years’, Nature 406, 695–699.

    Article  Google Scholar 

  • Pirt, S.J., Lee, Y.K., Richmond, A. and Pirt, M.W.: 1980, ‘The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization’, Journal of Chemical Technology and Biotechnology 30, 25–34.

    Article  Google Scholar 

  • Pringsheim, E.G.: 1928, ‘Algenkulturen. Eine Liste der Stamme, welche auf Wunsch abgegeben wurden’, Archiv für Protistenkunde 68, 255–258.

    Google Scholar 

  • Radmer, R. and Kok, B.: 1977, ‘Photosynthesis: Limited yields, unlimited dreams’, BioScience 27, 599–605.

    Article  Google Scholar 

  • Richmond, A.: 2000, ‘Microalgal biotechnology at the turn of the millenium: A personal view’, Journal of Applied Phycology 12, 441–451.

    Article  Google Scholar 

  • Richmond, A., Cheng-Wu, Z. and Zarmi, Y.: 2003, ‘Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition’, Biomolecular Engineering 20(4–6), 229–236.

    Article  Google Scholar 

  • RITE: 2004, Research Projects. Available from http://www.rite.or.jp/English/E-home-frame.html.

  • Roessler, P.G.: 1988a, ‘Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency’, Archives of Biochemistry and Biophysics 267(2), 521–528.

    Article  Google Scholar 

  • Roessler, P.G.: 1988b, ‘Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica’, Journal of Phycology 24, 294–297.

    Google Scholar 

  • Rubin, E.S., Cooper, R.N., Frosch, R.A., Lee, T.H., Marland, G., Rosenfeld, A.R. and Stine, D.D.: 1992, ‘Realistic mitigation options for global warming’, Science 257, 148–149, 261–266.

    Google Scholar 

  • Salvucci, M.E., Portis, A.R.J. and Ogren, W.L.: 1985, ‘A soluble chloroplast protein catalyzes ribulosebiphosphate carboxylase/oxygenase activation in vivo’, Photosynthesis Research 7, 193– 201.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P.: 1998, A Look Back at the U.S. Department of Energy's Aquatic Species Program – Biodiesel From Algae, Golden, CO, National Renewable Energy Institute, NREL/TP-580-24190, 328 pp.

    Google Scholar 

  • Smith, S.A. and Tabita, F.R.: 2003, ‘Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase’, Journal of Molecular Biology 331(3), 557–569.

    Article  Google Scholar 

  • Sòrensen, B.: 1999, Long-terms scenarios for global energy supply and demand: Four global greenhouse mitigation scenarios, Denmark, Roskilde University, Institute 2, Energy and Environment Group.

    Google Scholar 

  • Spoehr, H.A. and Milner, H.W.: 1948, Chlorella as a Source of Food, Washington, DC, Carnegie Institution of Washington Yearbook, Vol. 47.

    Google Scholar 

  • Spoehr, H.A. and Milner, H.W.: 1949, ‘The chemical composition of Chlorella: Effect of environmental conditions’, Plant Physiology 24, 120–149.

    Article  Google Scholar 

  • Spreitzer, R.J. and Salvucci, M.E.: 2002, ‘Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme’, Annual Review of Plant Biology 53, 449–475.

    Article  Google Scholar 

  • Sukenik, A., Falkowski, P. and Benet, J.: 1987, ‘Potential enhancement of photosynthetic energy conversion in algal mass culture’, Biotechnology and Bioengineering 30, 970–977.

    Article  Google Scholar 

  • Swisher, J. and Wilson, D.: 1993, ‘Renewable energy potentials’, Energy 18(5), 437–459.

    Article  Google Scholar 

  • Tadros, M.G. and Johansen, J.R.: 1988, ‘Physiological characterization of six lipid-producing diatoms from the southeastern United States’, Journal of Phycology 24(4), 445–452.

    Google Scholar 

  • Tamiya, H.: 1957, ‘Mass culture of algae’, Annual Review of Plant Physiology 8, 309–333.

    Article  Google Scholar 

  • Thomas, W.H., Seibert, D.L.R., Alden, M., Neori, A. and Eldridge, P.: 1984a, ‘Yields, photosynthetic efficiency, and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments’, Biomass 5, 181–209.

    Article  Google Scholar 

  • Thomas, W.H., Seibert, D.L.R., Alden, M., Neori, A. and Eldridge, P.: 1984b, ‘Yields, photosynthetic efficiency, and proximate composition of dense marine microalgal cultures. II. Dunaliella primolecta and Tetraselmis suecica experiments’, Biomass 5, 211–225.

    Article  Google Scholar 

  • Tornabene, T.G., Holzer, G. and Peterson, S.L.: 1980, ‘Lipid profile of the halophilic alga, Dunaliella salina’, Biochemical and Biophysical Research Communications 96(3), 1349–1356.

    Article  Google Scholar 

  • Tornabene, T.G., Holzer, G., Lien, S. and Burris, N.: 1983, ‘Lipid composition of the nitrogen starved green alga Neochloris oleoabundans’, Enzyme and Microbial Technology 5(6), 435–440.

    Article  Google Scholar 

  • UNFCC: 1997, The Kyoto Protocol to the Convention on Climate Change, Bonn, Climate Change Secretariat.

    Google Scholar 

  • Usui, N. and Ikenouchi, M.: 1997, ‘Biological CO2 fixation and utilization project by RITE. 1. Highly-effective photobioreactor system’, Energy Conversion and Management 38(Suppl.), 487–492.

    Article  Google Scholar 

  • Warburg, O.: 1919, ‘Uber die Geschwindikeit der photochemischen Kohlensaüerzetzang in lebenden Zellen’, Biochimische Zeitschrift 100, 230–262.

    Google Scholar 

  • WEC: 1998, Global Transport and Energy Development: The Scope for Change, London, England, World Energy Council.

    Google Scholar 

  • Weissman, J.C. and Tillett, D.T.: 1992, Design and Operation of an Outdoor Microalgae Test Facility: Large-Scale System Results, Golden, Colorado, USA, National Renewable Energy Laboratory, NREL/MP-232-4174, pp. 32–56.

    Google Scholar 

  • Williams, R.H.: 1995, Variants of a Low CO2-Emitting Energy Supply System (LESS) for the World: Prepared for the IPCC Second Assessment Report Working Group IIa, Energy Supply Mitigation Options, Pacific Northwest Laboratories.

  • Wolf, F.R.: 1983, ‘Botryococcus braunii: An unusual hydrocarbon-producing alga’, Applied Biochemistry and Biotechnology 8(3), 249–260.

    Google Scholar 

  • Wolf, F.R., Nonomura, A.M. and Bassham, J.: 1985, ‘Growth and branched hydrocarbon production in a strain of Botryococcus braunii (chlorophyta)’, Journal of Phycology 21(3), 388–396.

    Article  Google Scholar 

  • World Atlas: 1999, ‘World Atlas and Industry Guide 1999–2000’, The International Journal on Hydropower and Dams.

  • Yamamoto, H.K., Yamaji, K. and Fujino, J.: 1999, ‘Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique’, Applied Energy 63(2), 101–113.

    Article  Google Scholar 

  • Zarrouk, C.: 1966, Contribution à l'étude d'une cyanophycée. Influènce de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch. et Gardner) Geitler, Paris, France, University of Paris.

    Google Scholar 

  • Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A. and Cohen, Z.: 2002, ‘Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high is correlated with that of astaxanthin esters’, Journal of Phycology 38, 325–331.

    Article  Google Scholar 

  • Zhu, C.J. and Lee, Y.K.: 1997, ‘Determination of biomass dry weight in marine microalgae’, Journal of Applied Phycology 9, 189–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Huntley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntley, M.E., Redalje, D.G. CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitig Adapt Strat Glob Change 12, 573–608 (2007). https://doi.org/10.1007/s11027-006-7304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-006-7304-1

Keywords

Navigation