Skip to main content
Log in

Winter-time ecology in the Bothnian Bay, Baltic Sea: nutrients and algae in fast ice

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackley SF (1986) Sea ice pressure ridge microbial communities. Antarct J US 21:172–174

    Google Scholar 

  • Alasaarela E (1979) Phytoplankton and environmental conditions in central and coastal areas of the Bothnian Bay. Ann Bot Fennici 16:241–274

    Google Scholar 

  • Alasaarela E, Myllymaa U (1978) Investigations into the dispersal of river and waste waters in the Bothnian Bay in 1975–1977. Finn Mar Res 244:173–182

    CAS  Google Scholar 

  • Axe P, Andersson P (2008) Spatial distribution of the winter nutrient pool. HELCOM Indicator Fact Sheets 2008. http://www.helcom.fi/environment2/ifs/ifs2008/en_GB/SpatialDistrNutr/. Accessed 16 Apr 2009

  • Ban A, Aikawa S, Hattori H, Sasaki H, Sampei M, Kudoh S, Fukuchi M, Satoh K, Kashino Y (2006) Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03–04. Polar Biosci 19:11–28

    Google Scholar 

  • Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357

    Article  CAS  Google Scholar 

  • Buch K (1945) Kolsyrejämvikten i Baltiska Havet. Fennia 68:29–81

    Google Scholar 

  • Buck KR, Nielsen TG, Hansen BW, Gastrup-Hansen D, Thomsen HA (1998) Infiltration phyto-and protozooplankton assemblages in the annual sea ice of Disko Island, West Greenland, spring 1996. Polar Biol 20:377–381

    Article  Google Scholar 

  • Cota GF, Horne EPW (1989) Physical control of arctic ice algal production. Mar Ecol Prog Ser 52:111–121

    Article  Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  • Cox GFN, Weeks WF (1988) Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season. J Geophys Res 93:12449–12460

    Article  Google Scholar 

  • Ekholm M (1993) Suomen vesistöalueet. Vesi- ja ympäristöhallituksen julkaisuja, sarja A 126. Painatuskeskus Oy, Helsinki

    Google Scholar 

  • Fleming-Lehtinen V, Kaartokallio H, Olsonen R (2008a) Water transparency in the Baltic Sea between 1903 and 2008. HELCOM Indicator Fact Sheets 2008. http://www.helcom.fi/environment2/ifs/ifs2008/secchi/en_GB/secchi/. Accessed 26 Oct 2009

  • Fleming-Lehtinen V, Laamanen M, Kuosa H, Haahti H, Olsonen R (2008b) Long-term development of inorganic nutrients and chlorophyll α in the open northern Baltic Sea. Ambio 37:86–92

    Article  CAS  PubMed  Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239

    Article  Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241

    Article  CAS  PubMed  Google Scholar 

  • Gosselin M, Legendre L, Therriault JC, Demers S, Rochet M (1986) Physical control of the horizontal patchiness of sea-ice microalgae. Mar Ecol Prog Ser 29:289–298

    Article  Google Scholar 

  • Gosselin M, Legendre L, Therriault C, Demers S (1990) Light and nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian Arctic). J Phycol 26:220–232

    Article  CAS  Google Scholar 

  • Granskog MA, Kaartokallio H (2004) An estimation of the potential fluxes of nitrogen phosphorus, cadmium and lead from sea ice and snow in the northern Baltic Sea. Water Air Soil Pollut 154:331–347

    Article  CAS  Google Scholar 

  • Granskog MA, Kaartokallio H, Shirasawa K (2003a) Nutrient status of Baltic Sea ice: evidence for control by snow-ice formation, ice permeability, and ice algae. J Geophys Res 108(C8):3253. doi:10.1029/2002JC001386

    Article  CAS  Google Scholar 

  • Granskog MA, Martma TA, Vaikmäe RA (2003b) Development, structure and composition of land-fast sea ice in the northern Baltic Sea. J Glaciol 49:139–148

    Article  Google Scholar 

  • Granskog MA, Leppäranta M, Kawamura T, Ehn J, Shirasawa K (2004) Seasonal development of the properties and composition of landfast sea ice in the Gulf of Finland, the Baltic Sea. J Geophys Res 109(C2):C02020. doi:10.1029/2003JC001874

    Article  CAS  Google Scholar 

  • Granskog MA, Ehn J, Niemelä M (2005a) Characteristics and potential impacts of under-ice river plumes in the seasonally ice-covered Bothnian Bay (Baltic Sea). J Mar Syst 53:187–196

    Article  Google Scholar 

  • Granskog MA, Kaartokallio H, Thomas DN, Kuosa H (2005b) Influence of freshwater inflow on the inorganic nutrient and dissolved organic matter within coastal sea ice and underlying waters in the Gulf of Finland (Baltic Sea). Est Coast Shelf Sci 65:109–122

    Article  CAS  Google Scholar 

  • Granskog MA, Kaartokallio H, Kuosa H, Thomas DN, Ehn J, Sonninen E (2005c) Scales of horizontal patchiness in chlorophyll a, chemical and physical properties of landfast sea ice in the Gulf of Finland (Baltic Sea). Polar Biol 28:276–283

    Article  Google Scholar 

  • Granskog MA, Uusikivi J, Sequeiros AB, Sonninen E (2006a) Relation of ice growth rate to salt segregation during freezing of low-salinity sea water (Bothnian Bay, Baltic Sea). Ann Glaciol 44:134–138

    Article  CAS  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006b) Sea ice in the Baltic Sea–a review. Estuar Coast Shelf Sci 70:145–160

    Article  Google Scholar 

  • Haecky P, Andersson A (1999) Primary and bacterial production in sea ice in the northern Baltic Sea. Aquat Microb Ecol 20:107–118

    Article  Google Scholar 

  • Haecky P, Jonsson S, Andersson A (1998) Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. Polar Biol 20:1–8

    Article  Google Scholar 

  • Hällfors G (2004) Checklist of Baltic Sea phytoplankton species. Balt Sea Environ Proc 95:1–208

    Google Scholar 

  • HELCOM (1988) Guidelines for the Baltic monitoring programme for the third stage; part D. biological determinants. Balt Sea Environ Proc 27D:16–23

    Google Scholar 

  • HELCOM (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Balt Sea Environ Proc 106:1–144

    Google Scholar 

  • Huttunen M, Niemi Å (1986) Sea-ice algae in the northern Baltic Sea. Mem Soc Fauna Flora Fenn 62:58–62

    Google Scholar 

  • Ikävalko J (1998) Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol 19:323–329

    Article  Google Scholar 

  • Ikävalko J, Thomsen HA (1997) The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur J Protistol 33:229–243

    Google Scholar 

  • Kaartokallio H, Kuosa H, Thomas DN, Granskog MA, Kivi K (2007) Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biol 30:183–197

    Article  Google Scholar 

  • Kaartokallio H, Tuomainen J, Kuosa H, Kuparinen J, Martikainen PJ, Servomaa K (2008) Succession of sea-ice bacterial communities in the Baltic Sea fast ice. Polar Biol 31:783–793

    Article  Google Scholar 

  • Kangas P, Alasaarela E, Lax HG, Jokela S, Storgård-Envall C (1993) Seasonal variation of primary production and nutrient concentrations in the coastal waters of the Bothnian Bay and the Quark. Aqua Fenn 23:165–176

    Google Scholar 

  • Kankaala P, Alasaarela E, Sundberg A (1984) Phytoplankton and zooplankton production in the north-eastern and central Bothnian Bay—a review of studies carried out in 1968–1978. Ophelia Suppl 3:69–88

    Google Scholar 

  • Krell A, Ummenhofer C, Kattner G, Naumov A, Evans D, Dieckmann GS, Thomas DN (2003) The biology and chemistry of land fast ice in the White Sea, Russia—a comparison of winter and spring conditions. Polar Biol 26:707–719

    Article  Google Scholar 

  • Kronholm M, Albertson J, Laine A (2005) Perämeri Life. Perämeren toimintasuunnitelma. Länstyrelsen i Norrbottens län, raportserie 1/2005

  • Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14

    Article  Google Scholar 

  • Kuosa H, Kaartokallio H (2006) Experimental evidence on nutrient and substrate limitation of Baltic Sea sea-ice algae and bacteria. Hydrobiologia 554:1–10

    Article  CAS  Google Scholar 

  • Larsen J, Kuosa H, Ikävalko J, Kivi K, Hällfors S (1995) A redescription of Scrippsiella hangoei (Schiller) comb. nov.–a ‘red tide’ dinoflagellate from the northern Baltic. Phycologia 34:135–144

    Article  Google Scholar 

  • Legendre L, Aota M, Shirasawa K, Martineau MJ, Ishikawa M (1991) Crystallographic structure of sea ice along a salinity gradient and environmental control of microalgae in the brine cells. J Mar Syst 2:347–357

    Article  Google Scholar 

  • Legendre L, Martineau MJ, Therriault JC, Demers S (1992) Chlorophyll a biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic). Polar Biol 12:445–453

    Google Scholar 

  • Legendre L, Robineau B, Gosselin M, Michel C, Ingram RG, Fortier L, Therriault JC, Demers S, Monti D (1996) Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada) II. Production and export of microalgae. J Mar Syst 7:233–250

    Article  Google Scholar 

  • Leppäranta M, Manninen T (1988) The brine and gas content of sea ice with attention to low salinities and high temperatures. Internal Rep 88-2, Finnish Institute of Marine Research, Helsinki

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Chichester

    Book  Google Scholar 

  • Lizotte MP, Sullivan CW (1991) Photosynthesis-irradiance relationships in microalgae associated with Antarctic pack ice: evidence for in situ activity. Mar Ecol Prog Ser 71:175–184

    Article  Google Scholar 

  • Macdonald RW, Carmack E (1991) The role of large-scale underice topography in separating estuary and ocean on an Arctic shelf. Atmos Ocean 29:37–53

    Google Scholar 

  • Mälkki P, Tamsalu R (1985) Physical features of the Baltic Sea. Finn Mar Res 252:1–110

    Google Scholar 

  • Mangoni O, Carrada GC, Modigh M, Catalano G, Saggiomo V (2009) Photoacclimation in Antarctic bottom ice algae: an experimental approach. Polar Biol 32:325–335

    Article  Google Scholar 

  • Meiners K, Fehling J, Granskog MA, Spindler M (2002) Abundance, biomass and composition of biota in Baltic Sea ice and underlying water (March 2000). Polar Biol 25:761–770

    Google Scholar 

  • Michel C, Legendre L, Demers S, Therriault JC (1988) Photoadaptation of sea-ice microalgae in springtime: photosynthesis and carboxylating enzymes. Mar Ecol Prog Ser 50:177–185

    Article  CAS  Google Scholar 

  • Nielsen GA, Bresta AM (eds) (1984) Guidelines for the measurement of phytoplankton primary production, 2nd edn. The Baltic Marine Biologists (BMB), Charlottenlund

    Google Scholar 

  • Norrman B, Andersson A (1994) Development of ice biota in a temperate sea area (Gulf of Bothnia). Polar Biol 14:531–537

    Article  Google Scholar 

  • Obata M, Taguchi S (2009) Photoadaptation of an ice algal community in thin sea ice, Saroma-ko Lagoon, Hokkaido, Japan. Polar Biol 32:1127–1135

    Article  Google Scholar 

  • Palosuo E (1961) Crystal structure of brackish and freshwater ice. Int Assoc Sci Hydrol 54:9–14

    Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Poulin M, Cardinal A, Legendre L (1983) Réponse d’une communauté de diatomées de glace à un gradient de salinité (baie d’Hudson). Mar Biol 76:191–202

    Article  Google Scholar 

  • Rahm L, Håkansson B, Larsson P, Fogelqvist E, Bremle G, Valderrama J (1995) Nutrient and persistent pollutant deposition on the Bothnian Bay ice and snow fields. Water Air Soil Pollut 84:187–201

    Article  CAS  Google Scholar 

  • Rintala JM, Piiparinen J, Ehn J, Autio R, Kuosa H (2006) Changes in phytoplankton biomass and nutrient quantities in sea ice as responses to light/dark manipulations during different phases of the Baltic winter 2003. Hydrobiologia 554:11–24

    Article  CAS  Google Scholar 

  • Rintala JM, Piiparinen J, Uusikivi J (2010) Drift-ice and under-ice water communities in the Gulf of Bothnia (Baltic Sea). Polar Biol 33:179–191

    Article  Google Scholar 

  • Robineau B, Legendre L, Kishino M, Kudoh S (1997) Horizontal heterogeneity of microalgal biomass in the first-year sea ice of Saroma-ko Lagoon (Hokkaido, Japan). J Mar Syst 11:81–91

    Article  Google Scholar 

  • Seinä A, Peltola J (1991) Duration of the ice season and statistics of fast ice thickness along the Finnish coast 1961–1990. Finn Mar Res 258:1–46

    Google Scholar 

  • SFS 3032 (1976) Determination of ammonia nitrogen of water. Finnish Standards Association, Helsinki

    Google Scholar 

  • SFS-EN 1484 (1997) Water analysis. Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Finnish Standards Association, Helsinki

    Google Scholar 

  • SFS-EN ISO 11905–1 (1998) Water quality. Determination of nitrogen. Part 1: method using oxidative digestion with peroxodisulfate. Finnish Standards Association, Helsinki

    Google Scholar 

  • SFS-EN ISO 13395 (1997) Finnish standard for nitrite and nitrate and their sum with spectrophotometric method and CFA- and FIA-techniques. Finnish Standards Association, Helsinki

    Google Scholar 

  • Steffens M, Granskog MA, Kaartokallio H, Kuosa H, Luodekari K, Papadimitriou S, Thomas DN (2006) Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea. Ann Glaciol 44:80–87

    Article  CAS  Google Scholar 

  • Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar Ecol Prog Ser 340:121–138

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Metodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Weeks WF, Ackley SF (1986) The growth, structure and properties of sea ice. In: Untersteiner N (ed) Geophysics of sea ice. NATO ASI Series B, Physics, Plenum Press, New York, pp 9–164

  • Weeks WF, Gow AJ, Kosloff P, Digby-Argus S (1990) The internal structure, composition and properties of brackish ice from the Bay of Bothnia. CRREL Monogr 90–1:5–15

    Google Scholar 

Download references

Acknowledgments

The Walter and Andrée de Nottbeck Foundation is gratefully acknowledged for funding this study. We also wish to express our gratitude to the University of Oulu and the Finnish Institute of Marine Research for providing the facilities. We also want to thank Elina Leskinen and Tommi Lepistö for their assistance during the field campaign, Kai Kivi (†) for algal counts, Vivi Fleming-Lehtinen for help with the map and the anonymous reviewers for their comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonna Piiparinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piiparinen, J., Kuosa, H. & Rintala, JM. Winter-time ecology in the Bothnian Bay, Baltic Sea: nutrients and algae in fast ice. Polar Biol 33, 1445–1461 (2010). https://doi.org/10.1007/s00300-010-0771-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0771-6

Keywords

Navigation