Skip to main content

Advertisement

Log in

The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Despite being an essential part of the marine food web during periods of ice cover, sea ice algae have not been studied in any detail in the Bering Sea. In this study, we investigated the diversity, abundance and ultimate fate of ice algae in the Bering Sea using sea ice, water and sub-ice sediment trap samples collected during two spring periods in 2008 and 2009: ice growth (March–mid-April) and ice melt (mid-April–May). The total ice algal species inventory included 68 species, dominated by typical Arctic ice algal diatom taxa. Only three species were determined from the water samples; we interpret the strong overlap in species as seeding of algal cells from the sea ice. Algal abundances in the ice exceeded 107 cells l−1 in the bottom 2-cm layer and were on average three orders of magnitude higher than in the water column. The vertical flux of algal cells beneath the ice during the period of ice melt (>108 cells m−2 day−1) exceeded export during the ice growth period by one order of magnitude; the vertical flux during both periods can only be sustained by the release of algae from the ice. Differences in the relative species proportions of algae among sample types indicated that the fate of the released ice algae was species specific, with some taxa contributing to seeding in the water column, while other taxa were preferentially exported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander V, Chapman T (1981) The role of epontic algal communities in Bering Sea ice. In: Hood D, Calder J (eds) Eastern Bering Sea shelf: oceanography and resources. NOAA, Seattle, pp 773–780

    Google Scholar 

  • Ambrose WG, von Quillfeldt C, Clough LM, Tilney PV, Tucker T (2005) The sub-ice algal community in the Chukchi Sea: large- and small-scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol 28:784–795. doi:10.1007/s00300-005-0002-8

    Article  Google Scholar 

  • Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1046/j.1442-9993.2001.01070.x

    Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM et al (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408. doi:10.1126/science.1215065

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM et al (2014) Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Res II 105:1–16. doi:10.1016/j.dsr2.2014.03.018

    Article  Google Scholar 

  • Bauerfeind E (1994) Particle flux and composition of sedimenting matter in the Greenland Sea. J Mar Syst 5:411–423. doi:10.1016/0924-7963(94)90005-1

    Article  Google Scholar 

  • Bluhm B, Gradinger R (2008) Regional variability in food availability for Arctic marine mammals. Ecol Appl 18:S77–S96. doi:10.1890/06-0562.1

    Article  PubMed  Google Scholar 

  • Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernandez-Mendez M, Hendricks S et al (2013) Export of algal biomass from the melting Arctic sea ice. Science 339:1430–1432. doi:10.1126/science.1231346

    Article  CAS  PubMed  Google Scholar 

  • Booth JA (1984) The epontic algal community of the ice edge zone and its significance to the Davis Strait ecosystem. Arctic 37:234–243. doi:10.14430/arctic2196

    Article  Google Scholar 

  • Booth B, Horner R (1997) Microalgae on the Arctic Ocean section, 1994: species abundance and biomass. Deep Sea Res II 44:1607–1622. doi:10.1016/S0967-0645(97)00057-X

    Article  Google Scholar 

  • Brown Z, Arrigo K (2012) Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. J Mar Sci 69:1180–1193. doi:10.1093/icesjms/fss113

    Google Scholar 

  • Carr J, Hergenrader G, Troelstrup NH (1986) A simple, inexpensive method for cleaning diatoms. Trans Am Microsc Soc 105:152–157. doi:10.2307/3226387

    Article  Google Scholar 

  • Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Colwell R (2013) EstimateS: statistical estimation of species richness and shared species from samples (software and user’s guide), version 9. http://purl.oclc.org/estimates

  • Conover R, Huntley M (1991) Copepods in ice-covered seas—distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. J Mar Syst 2:1–41. doi:10.1016/0924-7963(91)90011-I

    Article  Google Scholar 

  • Cooper LW, Sexson MG, Grebmeier JM, Gradinger RR, Mordy CW, Lovvom JR (2013) Linkages between sea-ice coverage, pelagic–benthic coupling, and the distribution of spectacled eiders: observations in March 2008, 2009 and 2010, northern Bering Sea. Deep Sea Res II 94:31–43. doi:10.1016/j.dsr2.2013.03.009

    Article  CAS  Google Scholar 

  • Druzhkov N, Druzhkova E, Kuznetsov L (2001) The sea-ice algal community of seasonal pack ice in the southwestern Kara Sea in late winter. Polar Biol 24:70–72. doi:10.1007/s003000000185

    Article  Google Scholar 

  • Durbin EG, Casas MC (2014) Early reproduction by Calanus glacialis in the northern Bering Sea: the role of ice algae as revealed by molecular analysis. J Plankton Res 36:523–541. doi:10.1093/plankt/fbt121

    Article  Google Scholar 

  • Edler L, Elbrächter M (2010) The Utermöhl method for quantitative phytoplankton analysis. In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO, Paris, pp 13–20

    Google Scholar 

  • Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Lepparanta M (2010) Field techniques for sea-ice research. University of Alaska Press, Fairbanks

    Google Scholar 

  • Eppley R, Holmes R, Strickland J (1967) Sinking rates of marine phytoplankton measured with a fluorometer. J Exp Mar Biol Ecol 1:191–208. doi:10.1016/0022-0981(67)90014-7

    Article  Google Scholar 

  • Falk-Petersen S, Sargent J (1998) Lipids and fatty acids in ice algae and phytoplankton from the marginal ice zone in the Barents Sea. Polar Biol 20:41–47. doi:10.1007/s003000050274

    Article  Google Scholar 

  • Flint M, Sukhanova I, Kopylov A, Poyarkov S, Whiteledge T (2002) Plankton distribution associated with front al zones in the vicinity of the Pribolof Islands. Deep Sea Res II 49:6069–6093. doi:10.1016/S0967-0645(02)00334-X

    Article  Google Scholar 

  • Fortier L, Le Fèvre J, Legendre L (1994) Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. J Plankton Res 16:809–839. doi:10.1093/plankt/16.7.809

    Article  Google Scholar 

  • Fortier M, Fortier L, Michel C, Legendre L (2002) Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar Ecol Prog Ser 225:1–16. doi:10.3354/meps225001

    Article  Google Scholar 

  • Garrison D, Buck K (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239. doi:10.1007/BF00443401

    Article  Google Scholar 

  • Gordon LI, Jennings JC Jr, Ros AA and Krest JM (1993) A suggested protocol for continuous flow automated analysis of seawater nutrients (phosphate, nitrate, nitrite and silicic acid) in the WOCE hydrographic program and the joint global ocean fluxes study. WOCE Operations Manual, Part 3.1.3 “WHP Operations and Methods” (WOCE Hydrographic Program Office, Methods Manual 91-1) Bundesamt für Seeschiffahrt und Hydrographie, Postfach 30 12 20, 2000 Hamburg 36 Germany. http://chemoc.coas.oregonstate.edu:16080/~lgordon/cfamanual/whpmanual.pdf

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res II 44:1623–1644. doi:10.1016/S0967-0645(97)00054-4

    Article  CAS  Google Scholar 

  • Gradinger R (1996) Occurrence of an algal bloom under Arctic pack ice. Mar Ecol Prog Ser 131:301–305. doi:10.3354/meps131301

    Article  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Res II 56:1201–1212. doi:10.1016/j.dsr2.2008.10.016

    Article  CAS  Google Scholar 

  • Gradinger R, Kaufman MR, Bluhm BA (2009) Pivotal role of sea ice sediments in the seasonal development of near-shore Arctic fast ice biota. Mar Ecol Prog Ser 394:49–63. doi:10.3354/meps08320

    Article  CAS  Google Scholar 

  • Grebmeier J (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67. doi:10.3354/meps048057

    Article  Google Scholar 

  • Haecky P, Jonsson S, Andersson A (1998) Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. Polar Biol 20:1–8. doi:10.1007/s003000050270

    Article  Google Scholar 

  • Hasle GR, Fryxell GA (1970) Diatoms: cleaning and mounting for light and electron microscopy. Trans Am Microsc Soc 89:469–474. doi:10.2307/3224555

    Article  Google Scholar 

  • Hegseth EN (1998) Primary production of the northern Barents Sea. Polar Res 17:113–123. doi:10.1111/j.1751-8369.1998.tb00266.x

    Article  Google Scholar 

  • Horner R, Schrader G (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503. doi:10.14430/arctic2356

    Article  Google Scholar 

  • Hsiao SC (1980) Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic 33:768–793. doi:10.14430/arctic2595

    Article  Google Scholar 

  • Hsiao SC (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nov Hedwig 37:225–313

    Google Scholar 

  • Hunt GL, Stabeno PJ, Strom S, Napp JM (2008) Patterns of spatial and temporal variation in the marine ecosystem of the southeastern Bering Sea, with special reference to the Pribilof Domain. Deep Sea Res II 55:1919–1944. doi:10.1016/j.dsr2.2008.04.032

    Article  Google Scholar 

  • Ikavalko J, Gradinger R (1998) Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. J Plankton Res 20:871–886. doi:10.1093/plankt/20.5.871

    Article  Google Scholar 

  • Ikavalko J, Thomsen H (1997) The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur J Protistol 33:229–243. doi:10.1016/S0932-4739(97)80001-6

    Article  Google Scholar 

  • Iversen M, Poulsen LK (2007) Coprohexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar Ecol Prog Ser 350:79–89. doi:10.3354/meps07095

    Article  Google Scholar 

  • Jin M, Deal C, Wang J, Alexander V, Gradinger RR, Saitoh S, Iida T, Wan Z, Stabeno P (2007) Ice-associated phytoplankton blooms in the southeastern Bering Sea. Geophys Res Lett 34:L06612. doi:10.1029/2006GL028849

    Google Scholar 

  • Lalande C, Forest A, Barber DG, Gratton Y, Fortier L (2009) Variability in the annual cycle of vertical particulate organic carbon export on Arctic shelves: contrasting the Laptev Sea, Northern Baffin Bay and the Beaufort Sea. Cont Shelf Res 29:2157–2165. doi:10.1016/j.csr.2009.08.009

    Article  Google Scholar 

  • Lalande C, Nöthig EM, Somavilla R, Bauerfeind E, Shevchenko V, Okolodkov Y (2014) Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob Biogeochem Cycles 28:571–583. doi:10.1002/2013GB004735

    Article  CAS  Google Scholar 

  • Lee HC, Delworth TL, Rosati A, Zhang R, Anderson WG, Zeng F, Stock CA, Gnanadesikan A, Dixon KW, Griffies SM (2012) Impact of climate warming on upper layer of the Bering Sea. Clim Dyn 40:327–340. doi:10.1007/s00382-012-1301-8

    Article  Google Scholar 

  • Legendre L, Ingram R, Poulin M (1981) Physical control of phytoplankton production under sea ice. Can J Fish Aquat Sci 38:1385–1392. doi:10.1139/f81-185

    Article  Google Scholar 

  • Legendre L, Aota M, Shirasawa K, Martineau MJ, Ishikawa M (1991) Crystallographic structure of sea ice along a salinity gradient and environmental control of microalgae in the brine cells. J Mar Syst 2:347–357. doi:10.1016/0924-7963(91)90041-R

    Article  Google Scholar 

  • Leu E, Wiktor J, Søreide J, Berge J, Falk-Petersen S (2010) Increased irradiance reduces food quality of sea ice algae. Mar Ecol Prog Ser 411:49–60. doi:10.3354/meps08647

    Article  CAS  Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog Oceanogr 90:18–32. doi:10.1016/j.pocean.2011.02.004

    Article  Google Scholar 

  • Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening—steering principles behind the phenology of vernal ice algae blooms. Prog Oceanogr. doi:10.1016/j.pocean.2015.07.012

  • Leventer A, Dunbar RB (1987) Diatom flux in McMurdo Sound, Antarctica. Mar Micropaleontol 12:49–64. doi:10.1016/0377-8398(87)90013-2

    Article  Google Scholar 

  • Lovejoy C, Legendre L, Martineau MJ, Bacle J, von Quillfeldt CH (2002) Distribution of phytoplankton and other protists in the North Water. Deep Sea Res II 49:5027–5047. doi:10.1016/S0967-0645(02)00176-5

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Markus T et al (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114(C12):C12–C024

    Google Scholar 

  • McMinn A, Hegseth E (2004) Quantum yield and photosynthetic parameters of marine microalgae from the southern Arctic Ocean, Svalbard. J Mar Biol Assoc UK 84:865–871. doi:10.1017/S0025315404010112h

    Article  CAS  Google Scholar 

  • McMinn A, Hattori H, Hirawake T, Iwamoto A (2008) Preliminary investigation of Okhotsk Sea ice algae; taxonomic composition and photosynthetic activity. Polar Biol 31:1011–1015. doi:10.1007/s00300-008-0433-0

    Article  Google Scholar 

  • McRoy C, Goering J (1974) The influence of ice on the primary productivity of the Bering Sea. In: Hood D, Kelley E (eds) Oceanography of the Bering Sea, vol 2. Institute of Marine Science, University of Alaska, Fairbanks, pp 403–421

  • Melnikov I (1987) The Arctic sea ice ecosystem. Gordon and Breach Science, Amsterdam

    Google Scholar 

  • Melnikov I, Kolosova EG, Welch HE, Zhitina LS (2002) Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep Sea Res I 49:1623–1649. doi:10.1016/S0967-0637(02)00042-0

    Article  CAS  Google Scholar 

  • Michel C, Legendre L (1996) Carbon budget of sea-ice algae in spring: evidence of a significant transfer to zooplankton grazers. J Geophys Res 101:345–360. doi:10.1029/96JC00045

    Google Scholar 

  • Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T (1993) Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol 13:441–449. doi:10.1007/BF00233135

    Article  Google Scholar 

  • Michel C, Legendre L, Taguchi S (1997) Coexistence of microalgal sedimentation and water column recycling in a seasonally ice-covered ecosystem. J Mar Syst 11:133–148. doi:10.1016/S0924-7963(96)00034-6

    Article  Google Scholar 

  • Michel C, Nielsen TG, Nozais C, Gosselin M (2002) Significance of sedimentation and grazing by ice micro- and meio-fauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat Microb Ecol 30:57–68. doi:10.3354/ame030057

    Article  Google Scholar 

  • Michel C, Ingram RG, Harris LR (2006) Variability in oceanographic and ecological processes in the Canadian Arctic archipelago. Prog Oceanogr 71:379–401. doi:10.1016/j.pocean.2006.09.006

    Article  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26. doi:10.3354/meps177015

    Article  CAS  Google Scholar 

  • Mundy CJ, Gosselin M, Gratton Y, Brown K, Galindo V, Campbell K, Levasseur M, Barber D, Papakyriakou T, Bélanger S (2014) Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar Ecol Prog Ser 497:39–49. doi:10.3354/meps10587

    Article  Google Scholar 

  • Okolodkov Y (1993) A checklist of algal species found in the East Siberian Sea in May 1987. Polar Biol 13:7–11. doi:10.1007/BF00236578

    Article  Google Scholar 

  • Olli K, Wexels Riser C, Wassmann P, Ratkova T, Arashkevich E, Pasternak A (2002) Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea. J Mar Syst 38:189–204. doi:10.1016/S0924-7963(02)00177-X

    Article  Google Scholar 

  • Pachauri RK, Reisinger A (2007) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Pease C (1980) Eastern Bering Sea ice processes. Mon Weather Rev 1:2015–2023. doi:10.1175/1520-0493(1980)108<2015:EBSIP>2.0.CO;2

    Article  Google Scholar 

  • Peinert R, Antia A, Bauerfeind E, Bodungen BV, Haupt O, Krumbholz M, Peeken I, Ramseier RO, Voss M, Zeitzschel B (2001) Particle flux variability in the Polar and Atlantic biogeochemical provinces of the Nordic Seas. In: The northern North Atlantic. Springer, Berlin, pp 53–68. doi:10.1007/978-3-642-56876-3_4

  • Petrich C, Nicolaus M, Gradinger R (2012) Sensitivity of the light field under sea ice to spatially inhomogeneous optical properties and incident light assessed with three-dimensional Monte Carlo radiative transfer simulations. Cold Reg Sci Technol 73:1–11. doi:10.1016/j.coldregions.2011.12.004

    Article  Google Scholar 

  • Pineault S, Tremblay J-É, Gosselin M, Thomas H, Shadwick E (2013) The isotopic signature of particulate organic C and N in bottom ice: key controlling factors and applications for tracing the fate of ice-algae in the Arctic Ocean. J Geophys Res (Oceans) 118:1–14. doi:10.1029/2012JC008331

    Article  Google Scholar 

  • Pogson L, Tremblay B, Lavoie D, Michel C, Vancoppenolle M (2011) Development and validation of a one-dimensional snow-ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago. J Geophys Res 116:C04010. doi:10.1029/2010JC006119

    Google Scholar 

  • Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, von Quillfeldt C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28. doi:10.1007/s12526-010-0058-8

    Article  Google Scholar 

  • Poulin M, Underwood G, Michel C (2014) Sub-ice colonial Melosira arctica in Arctic first-year ice. Diatom Res 29:213–221. doi:10.1080/0269249X.2013.877085

    Article  Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248. doi:10.1007/BF00238457

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67. doi:10.3354/meps342055

    Article  CAS  Google Scholar 

  • Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the Coastal Arctic Ocean. J Mar Syst 74:887–901. doi:10.1016/j.jmarsys.2007.11.009

    Article  Google Scholar 

  • Różańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protist communities during the winter-spring transition. Mar Ecol Prog Ser 386:43–59. doi:10.3354/meps08092

    Article  Google Scholar 

  • Sanders H (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282. doi:10.1086/282541

    Article  Google Scholar 

  • Schandelmeier L, Alexander V (1979) A quantitative study of the phytoplankton from the eastern Bering Sea. In: Alexander V (ed) Ice Edge ecosystem study: final report to National Oceanographic and Atmospheric Association, Shelf Environment Assessment Program. Institute of Marine Science, University of Alaska, Fairbanks

  • Schandelmeier L, Alexander V (1981) An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea. Limnol Oceanogr 26:935–943. doi:10.4319/lo.1981.26.5.0935

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Ross C (2013) Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep Sea Res II 94:57–67. doi:10.1016/j.dsr2.2013.03.019

    Article  CAS  Google Scholar 

  • Sigler M, Harvey H (2010) How does climate change affect the Bering Sea ecosystem? Eos 91:457–468. doi:10.1029/2010EO480001

    Article  Google Scholar 

  • Sigler MF, Stabeno PJ, Eisner LB, Napp JM, Mueter FJ (2014) Spring and fall phytoplankton blooms in the Eastern Bering Sea during 1995–2011. Alaska Fisheries Science Center, quarterly report 1–6 http://www.afsc.noaa.gov/Quarterly/AMJ2014/AMJ2014.pdf (Accessed 10 Nov 2014)

  • Smayda T (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev 8:353–414

    Google Scholar 

  • Smayda T (1971) Normal and accelerated sinking of phytoplankton in the sea. Mar Geol 11:105–122. doi:10.1016/0025-3227(71)90070-3

    Article  Google Scholar 

  • Stabeno P, Napp J, Mordy C, Whitledge T (2010) Factors influencing physical structure and lower trophic levels of the eastern Bering Sea shelf in 2005: sea ice, tides and winds. Prog Oceanogr 85:180–196. doi:10.1016/j.pocean.2010.02.010

    Article  Google Scholar 

  • Stabeno PJ, Farley EV, Kachel NB, Moore S, Mordy CW, Napp JM, Overland JE, Pinchuk AI, Sigler MF (2012) A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. Deep Sea Res II 70:14–30. doi:10.1016/j.dsr2.2012.02.019

    Article  Google Scholar 

  • Takahashi K (1986) Seasonal fluxes of pelagic diatoms in the subarctic Pacific, 1982–1983. Deep Sea Res II 33:1225–1251. doi:10.1016/0198-0149(86)90022-1

    Article  Google Scholar 

  • Tamelander T, Heiskanen AS (2004) Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. J Mar Syst 52:217–234. doi:10.1016/j.jmarsys.2004.02.001

    Article  Google Scholar 

  • Taniguchi A, Saito K, Koyama A, Fukuchi M (1976) Phytoplankton communities in the Bering Sea and adjacent seas. J Oceanogr Soc Jpn 32:99–106. doi:10.1007/BF02107038

    Article  Google Scholar 

  • Tett P, Barton ED (1995) Why are there about 5000 species of phytoplankton in the sea? J Plankton Res 17:1693–1704. doi:10.1093/plankt/17.8.1693

    Article  Google Scholar 

  • Thomas D, Dieckmann G (2003) Sea Ice, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Tourangeau S, Runge J (1991) Reproduction of Calanus glacialis under ice in spring in southeastern Hudson Bay, Canada. Mar Biol 108:227–233. doi:10.1007/BF01344337

    Article  Google Scholar 

  • Tremblay JÉ, Hattori H, Michel C et al (2006) Trophic structure and pathways of biogenic carbon flow in the eastern North Water Polynya. Prog Oceanogr 71:402–425. doi:10.1016/j.pocean.2006.10.006

    Article  Google Scholar 

  • Tuschling K, Juterzentka K, Okolodkov Y, Anoshkin A (2000) Composition and distribution of the pelagic and sympagic algal assemblages in the Laptev Sea during autumnal freeze-up. J Plankton Res 22:843–864. doi:10.1093/plankt/22.5.843

    Article  Google Scholar 

  • von Quillfeldt CH (2000) Common diatom species in Arctic spring blooms: their distribution and abundance. Bot Mar 43:499–516. doi:10.1515/BOT.2000.050

    Google Scholar 

  • von Quillfeldt CH, Ambrose WG, Clough LM (2003) High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol 26:806–818. doi:10.1007/s00300-003-0549-1

    Article  Google Scholar 

  • Wang M, Bond N, Overland JE (2007) Comparison of atmospheric forcing in four sub-arctic seas. Deep Sea Res II 54:2543–2559. doi:10.1016/j.dsr2.2007.08.014

    Article  Google Scholar 

  • Wang SW, Budge SM, Gradinger RR, Iken K, Wooller MJ (2014) Fatty acid and stable isotope characteristics of sea ice and pelagic particulate organic matter in the Bering Sea: tools for estimating sea ice algal contribution to Arctic food web production. Oecologia 174:699–712. doi:10.1007/s00442-013-2832-3

    Article  PubMed  Google Scholar 

  • Wendler G, Chen L, Moore B (2013) Recent sea ice increase and temperature decrease in the Bering Sea area, Alaska. Theor Appl Climatol 117:393–398. doi:10.1007/s00704-013-1014-x

    Article  Google Scholar 

  • Zeebe RE, Eicken H, Robinson DH, Wofl-Gladrow D, Dieckmann GS (1996) Modeling the heating and melting of sea ice through light absorption by microalgae. J Geophys Res 101:1163–1181. doi:10.1029/95JC02687

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to all scientists and crew involved in the Bering Sea Ecosystem Study, who helped with sample collection for this project. We thank Ken Severin for his help with the scanning electron microscope. Thanks to Cecilie von Quillfeldt, as well as colleagues at the 2013 Polar Marine Diatom Taxonomy and Ecology Workshop in Cardiff, Wales, for their assistance with diatom taxonomy and identification. We thank Mike Lomas for data on the water column structure. We appreciate the help of Katrin Iken and R. Eric Collins with this manuscript. The Office of Polar Programs of the National Science Foundation supported this work through Grant ARC-0732767. Further support was provided through a grant from the Center for Global Change and Arctic Research at the University of Alaska Fairbanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Szymanski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Primary ice type at stations sampled during periods of ice growth and ice melt. Values for ice types: 1 - frazil, 2 - grease, 3 - brash ice, 4 - dark nilas, 5 - light nilas, 6 – pancakes, 7 - young grey ice, 8 - young grey white ice, 9 - first year white ice. (TIFF 67 kb)

Supplementary Fig. 2

Relative abundance (% of total) of diatom species in ice, water and sediment trap samples. Species shown are those contributing >5 % to the dissimilarity among sample types based on SIMPER analysis. Upper section shows diatom species composition during the ice growth period, lower section shows species composition during the ice melt period (TIFF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szymanski, A., Gradinger, R. The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea. Polar Biol 39, 309–325 (2016). https://doi.org/10.1007/s00300-015-1783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1783-z

Keywords

Navigation