Skip to main content
Log in

Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The abundance of diatoms and heterotrophic bacteria in sea ice rapidly increases during the spring. However, the number and activity of these microorganisms vary with changing environmental conditions and potentially the taxonomic composition of the algal community during this time. In this study, we assessed the spring bottom-ice community composition in Dease Strait, Nunavut, and investigated potential controls of chlorophyll a (chl a), particulate organic carbon (POC), cell abundance, and production from early March until early June. We found that using flow cytometry to estimate photosynthetic nanoeukaryote (2–20 μm) abundance gave results very similar to light microscopy counts, except when pennate diatoms with lengths close to 20 μm, the maximum size detected by flow cytometry, were abundant. Using the average abundance of nanoeukaryotes from the two methods, we documented a change in the size of cells comprising the ice algal community over the spring, from largely pico- (<2 μm), to nano- and microeukaryotes (20–200 μm). This shift in ice algal size corresponded to a bloom in diatoms that drove increases in chl a, POC, and primary productivity. Low-salinity surface waters, limited nutrient availability, as well as seasonally intensifying light in the bottom ice appeared to support dominance of the centric diatom Attheya spp. Increases in the number and productivity of heterotrophic bacteria in this study were correlated with the number of photosynthetic picoeukaryote cells, potentially due to their supply of dissolved organic carbon substrate. Our results suggest that future conditions predicted for the Arctic that include low nutrients and greater light transmission to the bottom of sea ice may favor an ice algal community dominated by centric diatoms versus the more characteristic pennate diatom-dominated community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    Article  CAS  Google Scholar 

  • Belzile C, Brugel S, Nozais C, Gratton Y, Demers S (2008) Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort Shelf waters during winter and spring. J Mar Syst 74:946–956. doi:10.1016/j.jmarsys.2007.12.010

    Article  Google Scholar 

  • Bowman JS (2015) The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elementa 3:1–20. doi:10.12952/journal.elementa.000072

    Google Scholar 

  • Bunch JN, Harland RC (1990) Bacterial production in the bottom surface of sea ice in the Canadian subarctic. Can J Fish Aquat Sci 43:1986–1995. doi:10.1139/f90-223

    Article  Google Scholar 

  • Campbell K, Mundy CJ, Barber DG, Gosselin M (2015) Characterizing the sea ice algae chl a-snow depth relationship over Arctic spring melt using transmitted irradiance. J Mar Syst 127:76–84. doi:10.1016/j.jmarsys.2014.01.008

    Article  Google Scholar 

  • Campbell K, Mundy CJ, Landy JC, Delaforge A, Michel C, Rysgaard S (2016) Community dynamics of bottom-ice algae in Dease Strait of the Canadian Arctic. Progr Oceanogr 149:27–39. doi:10.1016/j.pocean.2016.10.005

    Article  Google Scholar 

  • Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land-fast sea ice. J Phycol 49:229–240. doi:10.1111/jpy.12026

    Article  PubMed  Google Scholar 

  • Cota G, Horne E (1989) Physical control of arctic ice algal production. Mar Ecol Prog Ser 52:111–121

    Article  Google Scholar 

  • Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley Blackwell Publishing, Malaysia, pp 248–282

    Google Scholar 

  • Ducklow H (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Liss, pp 85–120

    Google Scholar 

  • Ducklow HW (2003) Seasonal production and bacterial utilization of DOC in the Ross Sea, Antarctica. Biogeochem of the Ross Sea 78:143–158. doi:10.1029/078ARS09

    Article  Google Scholar 

  • Falkowski PG, Owens TG (1978) Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Mar Biol 45:289–295

    Article  CAS  Google Scholar 

  • Glaz P, Sirois P, Archambault P, Nozais C (2014) Impact of forest harvesting on trophic structure of eastern Canadian boreal shield lakes: insights from stable isotope analyses. PLoS ONE. doi:10.1371/journal.pone.0096143

    Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282(5397):2238–2241. doi:10.1126/science.282.5397.2238

    Article  CAS  PubMed  Google Scholar 

  • Gosselin M, Legendre L, Demers S, Ingram RG (1985) Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson bay). Can J Fish Aquat Sci 42:999–1006

    Article  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic ocean. Deep Sea Res II 44(8):1623–1644. doi:10.1016/S0967-0645(97)00054-4

    Article  CAS  Google Scholar 

  • Haecky P, Anderson A (1999) Primary and bacterial production in sea ice in the northern Baltic sea. Aquat Microb Ecol 20:107–118. doi:10.3354/ame020107

    Article  Google Scholar 

  • Hawes I, Lund-Hansen LC, Sorrell BK, Nielsen MH, Borźak R, Buss I (2012) Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: insights from imaging variable chlorophyll fluorescence of ice cores. Photosynth Res 112:103–115. doi:10.1007/s11120-012-9736-7

    Article  CAS  PubMed  Google Scholar 

  • He J, Inghong C, Iaodong JX, Bo C, Yong Y (2005) Characterization of the summer pack ice biotic community of Canada Basin. Acta Ocean Sin 24(6):80–87

    Google Scholar 

  • Hsaio SIC (1992) Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biol 12:645–651. doi:10.1007/BF00236987

    Google Scholar 

  • Jackson JM, Allen SE, McLaughlin FA, Woodgate RA, Carmack EC (2011) Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993–2009: a basin in transition. J Geophys Res. doi:10.1029/2011JC007069

    Google Scholar 

  • Kaartokallio H, Søgaard DH, Norman L, Rysgaard S, Tison JL-, Delille B, Thomas DN (2013) Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquat Microbiol Ecol 71:57–73. doi:10.3354/ame01667

    Article  Google Scholar 

  • Kirchman DL (1993) Chapter 58: leucine incorporation as a measure of biomass production by heterotrophic bacteria. Handbook of methods in aquatic microbial ecology. CRC Press, Florida, pp 509–518

    Google Scholar 

  • Kirchmann D (2001) Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. Marine Microbiol 30:227–237. doi:10.1016/S0580-9517(01)30047-8

    Article  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199. doi:10.1111/j.0022-3646.1995.00181.x

    Article  Google Scholar 

  • Lee SH, Whiteledge TE, Kang S-H (2008) Spring time production of bottom ice algae in the landfast sea ice zone at Barrow Alaska. J Exp Mar Biol Ecol 367:204–212. doi:10.1016/j.jembe.2008.09.018

    Article  Google Scholar 

  • Legendre L, Demers S, Gosselin M (1987) Chlorophyll and photosynthetic efficiency of size-fractionated sea-ice microalgae (Hudson Bay, Canadian Arctic). Mar Ecol Prog Ser 40:199–203

    Article  CAS  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gullicksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota: part 2. Global significance. Polar Biol 12:429–444

    Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog Oceanogr 90:18–32. doi:10.1016/j.pocean.2011.02.004

    Article  Google Scholar 

  • Leu E, Mundy CJ, Assmy A, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening—steering principles behind the phenology of vernal ice algae blooms. Prog Oceanogr 139:151–170. doi:10.1016/j.pocean.2015.07.012

    Article  Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi:10.1126/science.1179798

    Article  CAS  PubMed  Google Scholar 

  • López-Sandoval DC, Fernández A, Marañón E (2011) Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. Biogeosciences 8:815–825. doi:10.5194/bg-8-815-2011

    Article  Google Scholar 

  • Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near resolute, NWT, Canada. Mar Ecol Prog Ser 111:121–127

    Article  Google Scholar 

  • Maranger R, Vaqué D, Nguyen D, Hébert M-P, Lara E (2015) Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: controlling factors and potential impacts of warming. Prog Oceanogr 139:221–232. doi:10.1016/j.pocean.2015.07.006

    Article  Google Scholar 

  • Medlin LK, Priddle J (1990) Polar marine diatoms. British Antarctic Survey, Cambridge

    Google Scholar 

  • Melnikov IA, Kolosova EG, Welch HE, Zhitina LS (2002) Sea ice biological communities and nutrient dynamics in the Canada basin of the Arctic Ocean. Deep Sea Res I 49:1623–1649. doi:10.1016/S0967-0637(02)00042-0

    Article  CAS  Google Scholar 

  • Michel C, Legendre L, Ingram RG, Gosselin M, Levasseur M (1996) Carbon budget of sea-ice algae in spring: evidence of a significant transfer to zooplankton grazers. J Geophys Res 101(C8):18345–18360

    Article  CAS  Google Scholar 

  • Michel C, Nielsen TG, Nozais C, Gosselin M (2002) Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat Microbiol Ecol 30:57–68. doi:10.3354/ame030057

    Article  Google Scholar 

  • Mikkelsen DM, Rysgaard S, Glud RN (2008) Microalgal composition and primary production in Arctic sea ice: a seasonal study from Kobbefjord (Kangerluarsunnguaq), west Greenland. Mar Ecol Prog Ser 368:65–74. doi:10.3354/meps07627

    Article  CAS  Google Scholar 

  • Miller CB, Wheeler PA (2012) Biological oceanography. Wiley Blackwell Publishing, Malaysia

    Google Scholar 

  • Mock T, Meiners KM, Giesenhagen HC (1997) Bacteria in sea ice and underlying brackish water at 54″26′50″N (Baltic Sea, Kiel Bight). Mar Ecol Progr Ser 158:23–40. doi:10.3354/meps158023

    Article  Google Scholar 

  • Mundy CJ, Barber DG, Michel C (2005) Variability of snow and ice thermal, physical and optical properties pertinent to sea ice algae biomass during spring. J Mar Syst 58:107–120. doi:10.1016/j.jmarsys.2005.07.003

    Article  Google Scholar 

  • Mundy CJ, Gosselin M, Ehn JK, Belzile C, Poulin M, Alou E, Roy S, Hop H, Lessard S, Papakyriakou TN, Barber DG, Stewart J (2011) Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34:1869–1896. doi:10.1007/s00300-011-0998-x

    Article  Google Scholar 

  • Niemi A, Michel C, Hille K, Poulin M (2011) Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biol 34:1803–1817. doi:10.1007/s00300-011-1059-1

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, New York

    Google Scholar 

  • Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the first-year ice of the Canadian Arctic. ISME 7:1461–1471. doi:10.1038/ismej.2013.39

    Article  CAS  Google Scholar 

  • Pogorzelec NM, Mundy CJ, Findlay CR, Campbell K, Diaz A, Ehn JK, Rysgaard S, Gough K (2017) FTIR imaging analysis of cell content in sea-ice diatom taxa during a spring bloom in the lower Northwest passage of the Canadian Arctic. Mar Ecol Prog Ser 569:77–88. doi:10.3354/meps12088

    Article  Google Scholar 

  • Poulin M, Cardinal A (1982) Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). III. Cymbellaceae, Entomoneidaceae, Gomphonemataceae, and Nitzschiaceae. Can J Bot 61:107–118

    Article  Google Scholar 

  • Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, Cvon Quillfeldt (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28. doi:10.1007/s12526-010-0058-8

    Article  Google Scholar 

  • Riedel A, Michel C, Poulin M, Lessard S (2003) Taxonomy and abundance of microalgae and protists at a first-year sea ice station near Resolute Bay, Nunavut, spring to early summer 2001. Fisheries and Oceans Canada: Canadian data report of hydrography and ocean sciences 159

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie shelf during the winter-spring transition. Aquat Microb Ecol 50:25–38. doi:10.3354/ame01155

    Article  Google Scholar 

  • Rózańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protest communities during the winter-spring transition. Mar Ecol Prog Ser 386:43–59. doi:10.3354/meps08092

    Article  Google Scholar 

  • Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the Coastal Arctic Ocean. J Mar Syst 74:887–901. doi:10.1016/j.jmarsys.2007.11.009

    Article  Google Scholar 

  • Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49:86–94. doi:10.4319/lo.2004.49.1.0086

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Sherr EB, Sherr BF (1993) Preservation and storage of samples for enumeration of heterotrophic protists. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Current methods in aquatic microbial ecology. Lewis Publishers, New York, pp 207–212

    Google Scholar 

  • Sime-Ngando T, Juniper SK, Demers S (1997) Ice-brine and planktonic microheterotrophs from Saroma-ko Lagoon, Hokkaido (Japan): quantitative importance and trophodynamics. J Mar Syst 11:149–161. doi:10.1016/S0924-7963(96)00035-8

    Article  Google Scholar 

  • Smith REH, Clement P (1990) Heterotrophic activity and bacterial productivity in assemblages in microbes from sea ice in the High Arctic. Polar Biol 10:351–357. doi:10.1007/BF00237822

    Article  Google Scholar 

  • Søgaard DH, Kristensen M, Rysgaard S, Glud RN, Hansen PJ, Hilligsoe KM (2010) Autotrophic and heterotrophic activity in Arctic first-year sea ice: seasonal study from Malene Bight, SW Greenland. Mar Ecol Progr Ser 419:31–45. doi:10.3354/meps08845

    Article  Google Scholar 

  • Søgaard DH, Thomas DN, Rysgaard S, Glud RN, Norman L, Kaartokallio H, Juul-Pedersen-Juul T, Gelfius N-X (2013) The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice. Polar Biol 36(12):1761–1777. doi:10.1007/s00300-013-1396-3

    Article  Google Scholar 

  • Søreide J, leu E, Berge J, Graeve M, Falk-Petersen SF (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol. doi:10.1111/j.1365-2486.2010.02175.x

    Google Scholar 

  • Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Bulletin Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Tomas CR (1997) Identifying marine phytoplankton. Academic Press, California

    Google Scholar 

  • Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay J-E (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microbiol Ecol 54:55–70. doi:10.3354/ame01257

    Article  Google Scholar 

  • Tremblay J, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, Reigstad M (2016) Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Progr Oceanogr 139:171–196. doi:10.1016/j.pocean.2015.08.009

    Article  Google Scholar 

  • vonQuillfedt CH, Hegseth EN, Johsen G, Sakshaug E, Syvertsen EE (2009) Ice algae. In: Sakshaug E, Johnsen G, Kavacs K (eds) Ecosystem Barents Sea. Pair Academic Press, Trondheim, pp 285–302

    Google Scholar 

Download references

Acknowledgements

Support for this research was provided by a Northern Scientific Training Program grant and Natural Sciences and Engineering Research Council of Canada (NSERC) Canadian Graduate Scholarship to KC, Canada Foundation for Innovation (CFI) and the Canada Excellence Research Chair grant to SR, NSERC Discovery and Northern Research Supplement Grants to CJM, and in-kind support from the Canadian High Arctic Research Station (CHARS). We thank Dr. Michel Gosselin and Ms. Sylvie Lessard for their support. This work represents a contribution to the research programs of ArcticNet, MEOPAR, the Arctic Science Partnership (ASP), and the Canada Excellence Research Chair unit at the Centre for Earth Observation Science (CEOS) at the University of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Campbell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, K., Mundy, C.J., Belzile, C. et al. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol 41, 41–58 (2018). https://doi.org/10.1007/s00300-017-2168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2168-2

Keywords

Navigation