Skip to main content

Advertisement

Log in

Succession of sea-ice bacterial communities in the Baltic Sea fast ice

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms. Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the importance of ice maturity and ice–water interactions in shaping the bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Rererences

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  • Brierley AS, Thomas DN (2002) Ecology of southern ocean pack ice. Adv Mar Biol 43:171–276

    Article  PubMed  Google Scholar 

  • Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack Ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  PubMed  CAS  Google Scholar 

  • Cota GF, Legendre L, Gosselin M, Ingram RG (1991) Ecology of bottom ice algae: I. Environmental controls and variability. J Mar Syst 2:257–277

    Article  Google Scholar 

  • Cottrell MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48:168–178

    Article  Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34:790–802

    PubMed  CAS  Google Scholar 

  • Dieckmann GS, Hellmer HH (2003) The importance of sea ice: an overview. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 1–21

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package). Version 3.5c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fuhrman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39:1085–1095

    PubMed  CAS  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120

    Article  Google Scholar 

  • Gonzalez JM, Whitman WB, Hodson RE, Moran MA (1996) Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl Environ Microbiol 62:4433–4440

    PubMed  CAS  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea—a review. Estuar Coast Shelf Sci 70:145–160

    Article  Google Scholar 

  • Grossmann S, Dieckmann G (1994) Bacterial standing stock, activity and carbon production during formation and growth of sea ice in the Weddell Sea, Antarctica. Appl Environ Microbiol 60:2746–2753

    PubMed  CAS  Google Scholar 

  • HELCOM (1988) Guidelines for the Baltic monitoring programme for the third stage; Part D. Biological Determinands, Report no. 27D

  • Junge K, Imhoff F, Staley K, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Kaartokallio H (2004) Food web components, and physical and chemical properties of Baltic Sea ice. Mar Ecol Prog Ser 273:49–63

    Article  CAS  Google Scholar 

  • Kaartokallio H, Laamanen M, Sivonen K (2005) Responses of Baltic sea ice and open-water natural bacterial communities to salinity change. Appl Environ Microbiol 71:4364–4371

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T, Shirasawa K, Ishikawa N, Lindfors A, Rasmus K, Granskog MA, Ehn J, Leppäranta M, Martma T, Vaikmäe R (2001) Time-series observations of the structure and properties of brackish ice in the Gulf of Finland. Ann Glaciol 33:1–4

    Article  Google Scholar 

  • Kirchman D, K’nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    PubMed  CAS  Google Scholar 

  • Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Methods 54:183–191

    Article  PubMed  CAS  Google Scholar 

  • Lizotte MP (2003) The microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 184–210

    Google Scholar 

  • Lopez I, Ruiz-Larrea F, Cocolin L, Orr E, Phister T, Marshall M, VanderGheynst J, Mills DA (2003) Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6801–6807

    Article  PubMed  CAS  Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    Article  PubMed  CAS  Google Scholar 

  • Mock T, Meiners KM, Giesenhagen HC (1997) Bacteria in sea ice and underlying brackish water at 54°26′50″N (Baltic Sea, Kiel Bight). Mar Ecol Prog Ser 158:23–40

    Article  Google Scholar 

  • Murray V (1989) Improved double-stranded sequencing using the linear polymerase chain reaction. Nucleic Acids Res 17:8889

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Vaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Petri R, Imhoff JF (2001) Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol 24:252–257

    Article  Google Scholar 

  • Pinhassi J, Hagström Å (2000) Seasonal succession in marine bacterioplankton. Aquat Microb Ecol 21:245–256

    Article  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Riemann B, Bjørnsen PK (1987) Advances in estimating bacterial biomass and growth in aquatic systems. Arch Hydrobiol (Beih Ergebn Limnol) 118:385–402

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, de Beer D (1998) Structural and functional analysis of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64:3731–3739

    PubMed  CAS  Google Scholar 

  • Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23:1205–1208

    Article  CAS  Google Scholar 

  • Sipura J, Haukka K, Helminen H, Lagus A, Suomela J, Sivonen K (2005) Effect of nutrient enrichment on bacterioplankton biomass and community composition in mesocosms in the Archipelago Sea, northern Baltic. J Plankton Res 27:1261–1272

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795

    PubMed  CAS  Google Scholar 

  • Tabor S, Richardson CC (1995) A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxynucleotides. Proc Natl Acad Sci USA 92:6339–6343

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2006) Community structure of the bacteria associated with Nodularia sp. (Cyanobacteria) aggregates in the Baltic Sea. Microb Ecol 52:513–522

    Article  PubMed  CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Metodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Walter and Andrée de Nottbeck Foundation and Academy of Finland. Tvärminne Zoological Station is acknowledged for access to its facilities and support by the station staff. N. Partanen and T. Rahkonen from the North-Savo Environment Centre are acknowledged for their skillfull technical assistance. Late Dr. Kai Kivi is gratefully acknowledged for plankton analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermanni Kaartokallio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaartokallio, H., Tuomainen, J., Kuosa, H. et al. Succession of sea-ice bacterial communities in the Baltic Sea fast ice. Polar Biol 31, 783–793 (2008). https://doi.org/10.1007/s00300-008-0416-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0416-1

Keywords

Navigation