Skip to main content

Advertisement

Log in

In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Limited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2–C3 through C7–T1. Ten asymptomatic subjects were imaged using a 3.0 T MR scanner and a sagittal multi-slice multi-echo sequence. Using the mid-sagittal image, intervertebral discs were divided into five regions-of-interest (ROIs), centered along the mid-line of the disc. Average T2 relaxation time values were calculated for each ROI using a mono-exponential fit. Differences in T2 values between disc levels and across ROIs of the same disc were examined. For a given ROI, the results showed a trend of increasing relaxation times moving down the spinal column, particularly in the middle regions (ROIs 2, 3 and 4). The C6–C7 and C7–T1 discs had significantly greater T2 values compared to superior discs (discs between C2 and C6). The results also showed spatial homogeneity of T2 values in the C3–C4, C4–C5, and C5–C6 discs, while C2–C3, C6–C7, and C7–T1 showed significant differences between ROIs. The findings indicate there may be inherent differences in T2-relaxation time properties between different cervical discs. Clinical evaluations utilizing T2-mapping techniques in the cervical spine may need to be level-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cote P, Cassidy JD, Carroll L. The factors associated with neck pain and its related disability in the Saskatchewan population. Spine (Phila Pa 1976). 2000;25:1109–17.

    Article  CAS  Google Scholar 

  2. Radhakrishnan K, Litchy WJ, O’Fallon WM, Kurland LT. Epidemiology of cervical radiculopathy: a population-based study from Rochester, Minnesota, 1976 through 1990. Brain. 1994;117(Pt 2):325–35.

    Article  PubMed  Google Scholar 

  3. Siivola SM, Levoska S, Tervonen O, et al. MRI changes of cervical spine in asymptomatic and symptomatic young adults. Eur Spine J. 2002;11:358–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teraguchi M, Yoshimura N, Hashizume H, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama spine study. Osteoarthr Cartil. 2014;22:104–10.

    Article  PubMed  CAS  Google Scholar 

  5. Lehto IJ, Tertti MO, Komu ME, et al. Age-related MRI changes at 0.1 T in cervical discs in asymptomatic subjects. Neuroradiology. 1994;36:49–53.

    Article  PubMed  CAS  Google Scholar 

  6. Matsumoto M, Fujimura Y, Suzuki N, et al. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg (Br). 1998;80:19–24.

    Article  CAS  Google Scholar 

  7. Matsumoto M, Okada E, Ichihara D, et al. Age-related changes of thoracic and cervical intervertebral discs in asymptomatic subjects. Spine (Phila Pa 1976). 2010;35:1359–64.

    Article  Google Scholar 

  8. Modic MT, Weinstein MA, Pavlicek W, et al. Magnetic resonance imaging of the cervical spine: technical and clinical observations. AJR Am J Roentgenol. 1983;141:1129–36.

    Article  PubMed  CAS  Google Scholar 

  9. Schellhas KP, Smith MD, Gundry CR, Pollei SR. Cervical discogenic pain: prospective correlation of magnetic resonance imaging and discography in asymptomatic subjects and pain sufferers. Spine (Phila Pa 1976). 1996;21:300–11. discussion 311–2.

    Article  CAS  Google Scholar 

  10. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J. 2006;15:705–18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kettler A, Rohlmann F, Neidlinger-Wilke C, et al. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part II—cervical spine. Eur Spine J. 2006;15:732–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malik KM, Cohen SP, Walega DR, Benzon HT. Diagnostic criteria and treatment of discogenic pain: a systematic review of recent clinical literature. Spine J. 2013;13:1675–89.

    Article  PubMed  Google Scholar 

  13. Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC. Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech. 2008;21:288–92.

    Article  PubMed  Google Scholar 

  14. Walraevens J, Liu B, Meersschaert J, et al. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints. Eur Spine J. 2009;18:358–69.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Inoue N, Espinoza Orias AA. Biomechanics of intervertebral disk degeneration. Orthop Clin N Am. 2011;42:487–99. vii.

    Article  Google Scholar 

  16. Wang C, Auerbach JD, Witschey WR, et al. Advances in magnetic resonance imaging for the assessment of degenerative disc disease of the lumbar spine. Semin Spine Surg. 2007;19:65–71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arslan E, Demirci I, Kilincaslan MO, et al. Identification of intervertebral disc regeneration with magnetic resonance imaging after a long-term follow-up in patients treated with percutaneous diode laser nucleoplasty: a retrospective clinical and radiological analysis of 14 patients. Eur Spine J. 2014;23:1044–51.

    Article  PubMed  Google Scholar 

  18. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM. Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J Biomech. 2014;47:2088–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grunert P, Gebhard HH, Bowles RD, et al. Tissue-engineered intervertebral discs: MRI results and histology in the rodent spine. J Neurosurg Spine. 2014;20:443–51.

    Article  PubMed  Google Scholar 

  20. Meisel HJ, Ganey T, Hutton WC, et al. Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J. 2006;15 Suppl 3:S397–405.

    Article  PubMed  Google Scholar 

  21. Potier E, de Vries S, van Doeselaar M, Ito K. Potential application of notochordal cells for intervertebral disc regeneration: an in vitro assessment. Eur Cell Mater. 2014;28:68–80. discussion 80–1.

    PubMed  CAS  Google Scholar 

  22. Blumenkrantz G, Zuo J, Li X, et al. In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63:1193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grunert P, Hudson KD, Macielak MR, et al. Assessment of intervertebral disc degeneration based on quantitative magnetic resonance imaging analysis: an in vivo study. Spine (Phila Pa 1976). 2014;39:E369–78.

    Article  Google Scholar 

  24. Hoppe S, Quirbach S, Mamisch TC, et al. Axial T2 mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol. 2012;22:2013–9.

    Article  PubMed  Google Scholar 

  25. Marinelli NL, Haughton VM, Anderson PA. T2 relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. AJNR Am J Neuroradiol. 2010;31:1278–82.

    Article  PubMed  CAS  Google Scholar 

  26. Nagashima M, Abe H, Amaya K, et al. A method for quantifying intervertebral disc signal intensity on T2-weighted imaging. Acta Radiol. 2012;53:1059–65.

    Article  PubMed  Google Scholar 

  27. Stelzeneder D, Welsch GH, Kovacs BK, et al. Quantitative T2 evaluation at 3.0T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol. 2012;81:324–30.

    Article  PubMed  Google Scholar 

  28. Takashima H, Takebayashi T, Yoshimoto M, et al. Correlation between T2 relaxation time and intervertebral disk degeneration. Skelet Radiol. 2012;41:163–7.

    Article  Google Scholar 

  29. Wang YX, Zhao F, Griffith JF, et al. T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI. Eur Radiol. 2013;23:228–34.

    Article  PubMed  Google Scholar 

  30. Wang YX, Griffith JF, Leung JC, Yuan J. Age related reduction of T1rho and T2 magnetic resonance relaxation times of lumbar intervertebral disc. Quant Imaging Med Surg. 2014;4:259–64.

    PubMed  PubMed Central  Google Scholar 

  31. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol. 2007;189:936–42.

    Article  PubMed  Google Scholar 

  32. Welsch GH, Trattnig S, Paternostro-Sluga T, et al. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skelet Radiol. 2011;40:543–51.

    Article  Google Scholar 

  33. Marinelli NL, Haughton VM, Munoz A, Anderson PA. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine (Phila Pa 1976). 2009;34:520–4.

    Article  Google Scholar 

  34. Tertti M, Paajanen H, Laato M, et al. Disc degeneration in magnetic resonance imaging: a comparative biochemical, Histologic, and radiologic study in cadaver spines. Spine (Phila Pa 1976). 1991;16:629–34.

    Article  CAS  Google Scholar 

  35. Pfirrmann C, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.

    Article  PubMed  CAS  Google Scholar 

  36. Chen C, Huang M, Han Z, et al. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults. PLoS ONE. 2014;9, e87856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bland JH, Boushey DR. Anatomy and physiology of the cervical spine. Semin Arthritis Rheum. 1990;20:1–20.

    Article  PubMed  CAS  Google Scholar 

  38. Mercer S, Bogduk N. The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine (Phila Pa 1976). 1999;24:619–26. discussion 627–8.

    Article  CAS  Google Scholar 

  39. Karakida O, Ueda H, Ueda M, Miyasaka T. Diurnal T2 value changes in the lumbar intervertebral discs. Clin Radiol. 2003;58:389–92.

    Article  PubMed  CAS  Google Scholar 

  40. Ludescher B, Effelsberg J, Martirosian P, et al. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging. 2008;28:252–7.

    Article  PubMed  Google Scholar 

  41. Paajanen H, Lehto I, Alanen A, Erkintalo M, Komu M. Diurnal fluid changes of lumbar discs measured indirectly by magnetic resonance imaging. J Orthop Res. 1994;12:509–14.

    Article  PubMed  CAS  Google Scholar 

  42. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17:205–16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaufman GN, Zaouter C, Valteau B, Sirois P, Moldovan F. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type a and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis. Arthritis Res Ther. 2011;13:R76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Matzat SJ, McWalter EJ, Kogan F, Chen W, Gold GE, et al. T relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging. 2015 Jul;42(1):105–13.

  45. Oda J, Tanaka H, Tsuzuki N. Intervertebral disc changes with aging of human cervical vertebra from the neonate to the eighties. Spine (Phila Pa 1976). 1988;13:1205–11.

    Article  CAS  Google Scholar 

  46. Scott JE, Bosworth TR, Cribb AM, Taylor JR. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat. 1994;184(Pt 1):73–82.

    PubMed  PubMed Central  Google Scholar 

  47. Wu M, Wang S, Driscoll SJ, et al. Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment. Eur Spine J. 2014;23:2350–8.

    Article  PubMed  Google Scholar 

  48. Ellingson AM, Mehta H, Polly DW, Ellermann J, Nuckley DJ. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine (Phila Pa 1976). 2013;38:E1533–40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge financial support from the National Institutes of Health (R21AR057989), K2M Group Holdings, Inc., and the Department of Orthopaedic Surgery at Massachusetts General Hospital/Harvard Medical School.

Author contributions statement

Substantial contributions to SJ Driscoll: research design; data acquisition, analysis, and interpretation; manuscript drafting, revision, and approval; W Zhong: data analysis; manuscript revision and approval; M Torriani: data acquisition and interpretation; manuscript revision and approval; KB Wood: data interpretation; manuscript revision and approval; TD Cha: research design; data interpretation; manuscript revision and approval; G Li: research design; data interpretation; manuscript revision and approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Li.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driscoll, S.J., Zhong, W., Torriani, M. et al. In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs. Skeletal Radiol 45, 393–400 (2016). https://doi.org/10.1007/s00256-015-2307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2307-1

Keywords

Navigation