Skip to main content
Log in

T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the relative performance of T1rho and T2 relaxation times in disc degeneration assessment.

Methods

Lumbar sagittal MRI was performed at 3 T in 52 subjects. With a spin-lock frequency of 500 Hz, T1rho was measured using a rotary echo spin-lock pulse embedded in a three-dimensional (3D) balanced fast field echo sequence. A multi-echo TSE sequence was used for T2 mapping. Regions of interest (ROIs) were drawn over the T1rho and T2 maps, including nucleus pulposus (NP) and annulus fibrosus (AF). Eight- and five-level disc degeneration semi-quantitative grading was performed.

Results

For NP, T1rho and T2 decreased quadratically with disc degeneration grades and had no significant trend difference (P = 0.40). For AF, T1rho decreased linearly as the disc degenerated and had a slope of −3.02 and −4.56 for eight- and five-level gradings respectively; while the slopes for T2 values were −1.43 and −1.84 respectively, being significantly flatter than those of T1rho (P < 0.001). There was no significant difference in T1rho and T2 values for both NP and AF among discs of grade 5/8 to 8/8 degeneration.

Conclusion

T1rho is better suited for evaluating AF in degenerated disc than T2. In NP, T1rho and T2 decrease in a similar pattern following disc degeneration.

Key Points

MRI provides unique information about the lumbar disc nucleus pulposus

Both T1rho and T2 relaxation times decrease similarly following disc degeneration

AF T1rho relaxation times decrease progressively faster than T2 relaxation times

T2 and T1rho relaxation times do not reduce further by disc-space narrowing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AF:

Annulus fibrosus

NP:

Nucleus pulposus

References

  1. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  PubMed  Google Scholar 

  2. Modic MT, Ross JS (2007) Lumbar degenerative disk disease. Radiology 245:43–61

    Article  PubMed  Google Scholar 

  3. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  PubMed  CAS  Google Scholar 

  4. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration in elderly subjects. Spine 32:E708–E712

    Article  PubMed  Google Scholar 

  5. Wang YX, Griffith JF, Ma HT, Kwok AWL, Leung JCS, Yeung DW, Ahuja AT, Leung PC (2011) Relationship between lumbar bone mineral density and disc degeneration: cross-sectional study in elderly subjects suing an 8-level disc degeneration grading system. Osteoporos Int 22:91–96

    Article  PubMed  CAS  Google Scholar 

  6. Wang YX, Kwok AW, Griffith JF, Leung JC, Ma MT, Ahuja AT, Leung PC (2011) Relationship between hip bone mineral density and lumbar disc degeneration: a study in elderly subjects using an 8-level MRI based disc degeneration grading system. J Magn Reson Imaging 33:916–920

    Article  PubMed  Google Scholar 

  7. Phillips FM, An H, Kang JD, Boden SD, Weinstein J (2003) Biologic treatment for intervertebral disc degeneration: summary statement. Spine 28:S99

    PubMed  Google Scholar 

  8. Vadalà G, Sowa GA, Kang JD (2007) Gene therapy for disc degeneration. Expert Opin Biol Ther 7:185–196

    Article  PubMed  Google Scholar 

  9. Carl A, Ledet E, Yuan H, Sharan A (2004) New developments in nucleus pulposus replacement technology. Spine J 4:325S–329S

    Article  PubMed  Google Scholar 

  10. Weidenbaum M, Foster RJ, Best BA, Saed-Nejad F, Nickoloff E, Newhouse J, Ratcliffe A, Mow VC (1992) Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res 10:552–561

    Article  PubMed  CAS  Google Scholar 

  11. Kerttula L, Kurunlahti M, Jauhiainen J, Koivula A, Oikarinen J, Tervonen O (2001) Apparent diffusion coefficients and T2 relaxation time measurements to evaluate disc degeneration: a quantitative MR study of young patients with previous vertebral fracture. Acta Radiol 42:585–591

    PubMed  CAS  Google Scholar 

  12. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C (2006) The value of T2 relaxation times to characterize lumbar intervertebral discs: preliminary results. AJNR Am J Neuroradiol 27:337–342

    PubMed  CAS  Google Scholar 

  13. Chiu EJ, Newitt DC, Segal MR, Hu SS, Lotz JC, Majumdar S (2001) Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine 26:E437–E444

    Article  PubMed  CAS  Google Scholar 

  14. Johannessen W, Auerbach J, Wheaton AJ, Kurji A, Reddy R, Borthakur A, Elliott DM (2006) Assessment of human disc degeneration and proteoglycan content using T1rho MRI. Spine 31:1253–1257

    Article  PubMed  Google Scholar 

  15. Blumenkrantz G, Li X, Han ET, Newitt DC, Crane JC, Link TM, Majumdar S (2006) A feasibility study of in vivo T1rho imaging of the intervertebral disc. Magn Reson Imaging 24:1001–1007

    Article  PubMed  Google Scholar 

  16. Auerbach JD, Johannessen W, Borthakur A, Wheaton AJ, Dolinskas CA, Balderston RA, Reddy R, Elliott DM (2006) In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging. Eur Spine J 15:338–344

    Article  Google Scholar 

  17. Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S (2010) In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200

    Article  PubMed  Google Scholar 

  18. Charagundla SR, Borthakur A, Leigh JS, Reddy R (2003) Artifacts in T(1rho)-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson 162:113–121

    Article  PubMed  CAS  Google Scholar 

  19. Li X, Han ET, Busse RF, Majumdar S (2008) In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med 59:298–307

    Article  PubMed  Google Scholar 

  20. Wang YX, Yuan J, Chu E, Huang H, Go MY, Ahuja AT, Sung JJ, Yu J (2011) Magnetic resonance T1rho imaging is sensitive to evaluate liver fibrosis: an experimental study in rat biliary duct ligation model. Radiology 259:712–719

    Article  PubMed  Google Scholar 

  21. Nguyen AM, Johannessen W, Yoder JH, Wheaton AJ, Vresilovic EJ, Borthakur A, Elliott DM (2008) Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J Bone Joint Surg Am 90:796–802

    Article  PubMed  Google Scholar 

  22. Marinelli NL, Haughton VM, Muñoz A, Anderson PA (2009) T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine 34:520–524

    Article  PubMed  Google Scholar 

  23. Krueger EC, Perry JO, Wu Y, Haughton VM (2007) Changes in T2 relaxation times associated with maturation of the human intervertebral disk. AJNR Am J Neuroradiol 28:1237–1241

    Article  PubMed  CAS  Google Scholar 

  24. Akella SV, Regatte RR, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, Leigh JS, Reddy R (2001) Proteoglycan induced changes in T1 ρ-relaxation of articular cartilage at 4T. Magn Reson Med 46:419–423

    Article  PubMed  CAS  Google Scholar 

  25. Cassinelli EH, Hall RA, Kang JD (2001) Biochemistry of intervertebral disc degeneration and the potential for gene therapy applications. Spine J 1:205–214

    Article  PubMed  CAS  Google Scholar 

  26. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  27. Wang YX (2005) Medical imaging in pharmaceutical clinical trials: what radiologists should know. Clin Radiol 60:1051–1057

    Article  PubMed  Google Scholar 

  28. Wang YX, Griffith JF (2010) Effect of menopause on lumbar disc degeneration: potential etiology. Radiology 257:318–320

    Article  PubMed  Google Scholar 

  29. Videman T, Battie MC, Gibbons LE, Maravilla K, Manninen H, Kaprio J (2003) Associations between back pain history and lumbar MRI findings. Spine 28:582–588

    PubMed  Google Scholar 

  30. Hassett G, Hart DJ, Manek NJ, Doyle DV, Spector TD (2003) Risk factors for progression of lumbar spine disc degeneration: the Chingford Study. Arthritis Rheum 48:3112–3117

    Article  PubMed  CAS  Google Scholar 

  31. Andersson GB (1998) Epidemiology of low back pain. Acta Orthop Scand Suppl 281:28–31

    PubMed  CAS  Google Scholar 

  32. Peterson CK, Bolton JE, Wood AR (2000) A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine 25:218–223

    Article  PubMed  CAS  Google Scholar 

  33. Borenstein DG, O’Mara JW Jr, Boden SD, Lauerman WC, Jacobson A, Platenberg C, Schellinger D, Wiesel SW (2001) The value of magnetic resonance imaging of the lumbar spine to predict low back pain in asymptomatic subjects: a 7-year follow-up study. J Bone Joint Surg Am 83-A:1306–1311

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by Hong Kong ITF grant ITS/021/10, and partially by grants from the Research Grants Council of the Hong Kong SAR (Project No. CUHK475911, CUHK418811, and No. SEG_CUHK02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xiang J. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YX.J., Zhao, F., Griffith, J.F. et al. T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI. Eur Radiol 23, 228–234 (2013). https://doi.org/10.1007/s00330-012-2591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2591-2

Keywords

Navigation