Skip to main content
Log in

Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Many studies have reported on the segmental motion range of the lumbar spine using various in vitro and in vivo experimental designs. However, the in vivo weightbearing dynamic motion characteristics of the L4–5 and L5–S1 motion segments are still not clearly described in literature. This study investigated in vivo motion of the lumbar spine during a weight-lifting activity.

Methods

Ten asymptomatic subjects (M/F: 5/5; age: 40–60 years) were recruited. The lumbar segment of each subject was MRI-scanned to construct 3D models of the L2–S1 vertebrae. The lumbar spine was then imaged using a dual fluoroscopic imaging system as the subject performed a weight-lifting activity from a lumbar flexion position (45°) to maximal extension position. The 3D vertebral models and the fluoroscopic images were used to reproduce the in vivo vertebral positions along the motion path. The relative translations and rotations of each motion segment were analyzed.

Results

All vertebral motion segments, L2–3, L3–4, L4–5 and L5–S1, rotated similarly during the lifting motion. L4–5 showed the largest anterior-posterior (AP) translation with 2.9 ± 1.5 mm and was significantly larger than L5–S1 (p < 0.05). L5–S1 showed the largest proximal–distal (PD) translation with 2.8 ± 0.9 mm and was significantly larger than all other motion segments (p < 0.05).

Conclusions

The lower lumbar motion segments L4–5 and L5–S1 showed larger AP and PD translations, respectively, than the higher vertebral motion segments during the weight-lifting motion. The data provide insight into the physiological motion characteristics of the lumbar spine and potential mechanical mechanisms of lumbar disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilbert JW, Martin JC, Wheeler GR, Storey BB, Mick GE, Richardson GB, Herder SL, Gyarteng-Dakwa K, Broughton PG (2010) Lumbar disk protrusion rates of symptomatic patients using magnetic resonance imaging. J Manipulative Physiol Ther 33:626–629. doi:10.1016/j.jmpt.2010.08.010

    Article  PubMed  Google Scholar 

  2. Biluts H, Munie T, Abebe M (2012) Review of lumbar disc diseases at Tikur Anbessa Hospital. Ethiop Med J 50:57–65

    PubMed  Google Scholar 

  3. Kuisma M, Karppinen J, Niinimaki J, Ojala R, Haapea M, Heliovaara M, Korpelainen R, Taimela S, Natri A, Tervonen O (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32:1116–1122. doi:10.1097/01.brs.0000261561.12944.ff

    Article  PubMed  Google Scholar 

  4. Evans W, Jobe W, Seibert C (1989) A cross-sectional prevalence study of lumbar disc degeneration in a working population. Spine 14:60–64

    Article  PubMed  CAS  Google Scholar 

  5. Takatalo J, Karppinen J, Niinimaki J, Taimela S, Nayha S, Jarvelin MR, Kyllonen E, Tervonen O (2009) Prevalence of degenerative imaging findings in lumbar magnetic resonance imaging among young adults. Spine 34:1716–1721. doi:10.1097/BRS.0b013e3181ac5fec

    Article  PubMed  Google Scholar 

  6. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34:934–940. doi:10.1097/BRS.0b013e3181a01b3f

    Article  PubMed  Google Scholar 

  7. Kanayama M, Togawa D, Takahashi C, Terai T, Hashimoto T (2009) Cross-sectional magnetic resonance imaging study of lumbar disc degeneration in 200 healthy individuals. J Neurosurg Spine 11:501–507. doi:10.3171/2009.5.SPINE08675

    Article  PubMed  Google Scholar 

  8. Rosenberg NJ (1975) Degenerative spondylolisthesis. Predisposing factors. J Bone Joint Surg Am 57:467–474

    PubMed  CAS  Google Scholar 

  9. Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA (2011) Rothman-Simeone the spine, 6th edn. Saunders Elsevier, Philadelphia

  10. Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K (2002) Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech 15:93–99

    Article  PubMed  Google Scholar 

  11. Friberg O (1987) Lumbar instability: a dynamic approach by traction-compression radiography. Spine 12:119–129

    Article  PubMed  CAS  Google Scholar 

  12. Sato H, Kikuchi S (1993) The natural history of radiographic instability of the lumbar spine. Spine 18:2075–2079

    Article  PubMed  CAS  Google Scholar 

  13. Iguchi T, Kanemura A, Kasahara K, Sato K, Kurihara A, Yoshiya S, Nishida K, Miyamoto H, Doita M (2004) Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech 17:284–290

    Article  PubMed  Google Scholar 

  14. Kanemura A, Doita M, Kasahara K, Sumi M, Kurosaka M, Iguchi T (2009) The influence of sagittal instability factors on clinical lumbar spinal symptoms. J Spinal Disord Tech 22:479–485. doi:10.1097/BSD.0b013e31818d1b18

    Article  PubMed  Google Scholar 

  15. Auerbach JD, Wills BP, McIntosh TC, Balderston RA (2007) Evaluation of spinal kinematics following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. Spine 32:527–536. doi:10.1097/01.brs.0000256915.90236.17

    Article  PubMed  Google Scholar 

  16. Kettler A, Marin F, Sattelmayer G, Mohr M, Mannel H, Durselen L, Claes L, Wilke HJ (2004) Finite helical axes of motion are a useful tool to describe the three-dimensional in vitro kinematics of the intact, injured and stabilised spine. Eur Spine J 13:553–559. doi:10.1007/s00586-004-0710-8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197. doi:10.1097/01.BRS.0000084877.88192.8E

    Article  PubMed  Google Scholar 

  18. el SariAli H, Lemaire JP, Pascal-Mousselard H, Carrier H, Skalli W (2006) In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-term results: a 10–14 years follow up evaluation. Eur Spine J 15:1501–1510. doi:10.1007/s00586-005-0016-5

    Article  Google Scholar 

  19. Siddiqui M, Karadimas E, Nicol M, Smith FW, Wardlaw D (2006) Effects of X-STOP device on sagittal lumbar spine kinematics in spinal stenosis. J Spinal Disord Tech 19:328–333. doi:10.1097/01.bsd.0000211297.52260.d5

    Article  PubMed  Google Scholar 

  20. Wong KW, Luk KD, Leong JC, Wong SF, Wong KK (2006) Continuous dynamic spinal motion analysis. Spine 31:414–419. doi:10.1097/01.brs.0000199955.87517.82

    Article  PubMed  Google Scholar 

  21. Zhu Q, Larson CR, Sjovold SG, Rosler DM, Keynan O, Wilson DR, Cripton PA, Oxland TR (2007) Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics. Spine 32:55–62. doi:10.1097/01.brs.0000250983.91339.9f

    Article  PubMed  Google Scholar 

  22. Bible JE, Biswas D, Miller CP, Whang PG, Grauer JN (2010) Normal functional range of motion of the lumbar spine during 15 activities of daily living. J Spinal Disord Tech 23:106–112. doi:10.1097/BSD.0b013e3181981823

    Article  PubMed  Google Scholar 

  23. Chleboun GS, Amway MJ, Hill JG, Root KJ, Murray HC, Sergeev AV (2012) Measurement of segmental lumbar spine flexion and extension using ultrasound imaging. J Orthop Sports Phys Ther 42:880–885. doi:10.2519/jospt.2012.3915

    Article  PubMed  Google Scholar 

  24. Hashemirad F, Hatef B, Jaberzadeh S, Ale Agha N (2013) Validity and reliability of skin markers for measurement of intersegmental mobility at L2-3 and L3-4 during lateral bending in healthy individuals: a fluoroscopy study. J Bodyw Mov Ther 17:46–52. doi:10.1016/j.jbmt.2012.04.010

    Article  PubMed  Google Scholar 

  25. Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara H, Tamaki T (2001) Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    Article  PubMed  CAS  Google Scholar 

  27. Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011

    Article  PubMed  CAS  Google Scholar 

  28. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380

    Article  PubMed  CAS  Google Scholar 

  29. Fujiwara A, An HS, Lim TH, Haughton VM (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine 26:876–882

    Article  PubMed  CAS  Google Scholar 

  30. Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15:1142–1147

    Article  PubMed  CAS  Google Scholar 

  31. Hayes MA, Howard TC, Gruel CR, Kopta JA (1989) Roentgenographic evaluation of lumbar spine flexion–extension in asymptomatic individuals. Spine 14:327–331

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion–extension and lateral bending. Spine 16:562–571

    Article  PubMed  CAS  Google Scholar 

  33. Boden SD, Wiesel SW (1990) Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine 15:571–576

    Article  PubMed  CAS  Google Scholar 

  34. Miyasaka K, Ohmori K, Suzuki K, Inoue H (2000) Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine 25:732–737

    Article  PubMed  CAS  Google Scholar 

  35. Li G, Wang S, Passias P, Xia Q, Wood K (2009) Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur Spine J 18:1013–1021. doi:10.1007/s00586-009-0936-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pearcy MJ (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl 212:1–45

    Article  PubMed  CAS  Google Scholar 

  37. Ahmadi A, Maroufi N, Behtash H, Zekavat H, Parnianpour M (2009) Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur Spine J 18:1677–1685. doi:10.1007/s00586-009-1147-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Passias PG, Wang S, Kozanek M, Xia Q, Li W, Grottkau B, Wood KB, Li G (2011) Segmental lumbar rotation in patients with discogenic low back pain during functional weight-bearing activities. J Bone Joint Surg Am 93:29–37. doi:10.2106/JBJS.I.01348

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li W, Wang S, Xia Q, Passias P, Kozanek M, Wood K, Li G (2011) Lumbar facet joint motion in patients with degenerative disc disease at affected and adjacent levels: an in vivo biomechanical study. Spine 36:E629–E637. doi:10.1097/BRS.0b013e3181faaef7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shin JH, Wang S, Yao Q, Wood KB, Li G (2013) Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur Spine J 22:2671–2677. doi:10.1007/s00586-013-2777-6

    Article  PubMed  Google Scholar 

  41. Mundt DJ, Kelsey JL, Golden AL, Pastides H, Berg AT, Sklar J, Hosea T, Panjabi MM (1993) An epidemiologic study of non-occupational lifting as a risk factor for herniated lumbar intervertebral disc. The northeast collaborative group on low back pain. Spine 18:595–602

    Article  PubMed  CAS  Google Scholar 

  42. Kelsey JL, Golden AL, Mundt DJ (1990) Low back pain/prolapsed lumbar intervertebral disc. Rheum Dis Clin North Am 16:699–716

    PubMed  CAS  Google Scholar 

  43. Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107

    Article  PubMed  CAS  Google Scholar 

  44. Wang S, Passias P, Li G, Li G, Wood K (2008) Measurement of vertebral kinematics using noninvasive image matching method-validation and application. Spine 33:E355–E361. doi:10.1097/BRS.0b013e3181715295

    Article  PubMed  Google Scholar 

  45. Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G (2006) Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 24:974–981. doi:10.1002/jor.20141

    Article  PubMed  Google Scholar 

  46. Bingham J, Li G (2006) An optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128:588–595. doi:10.1115/1.2205865

    Article  PubMed  Google Scholar 

  47. Li G, Van de Velde SK, Bingham J (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622

    Article  PubMed  Google Scholar 

  48. Rozumalski A, Schwartz MH, Wervey R, Swanson A, Dykes DC, Novacheck T (2008) The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28:378–384. doi:10.1016/j.gaitpost.2008.05.005

    Article  PubMed  Google Scholar 

  49. Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9:294–297

    Article  PubMed  CAS  Google Scholar 

  50. Bogduk N, Twomey LT (1987) Clinical anatomy of the lumbar spine. Churchill Livingstone, Melbourne, Edinburgh, London, New York

  51. Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763

    Article  PubMed  Google Scholar 

  52. Kozanek M, Wang S, Passias PG, Xia Q, Li G, Bono CM, Wood KB, Li G (2009) Range of motion and orientation of the lumbar facet joints in vivo. Spine 34:E689–E696. doi:10.1097/BRS.0b013e3181ab4456

    Article  PubMed  Google Scholar 

  53. Spangfort EV (1972) The lumbar disc herniation. A computer-aided analysis of 2,504 operations. Acta Orthop Scand Suppl 142:1–95

    PubMed  CAS  Google Scholar 

  54. Siepe CJ, Mayer HM, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement: different results for different levels. Spine 32:782–790. doi:10.1097/01.brs.0000259071.64027.04

    Article  PubMed  Google Scholar 

  55. Dewing CB, Provencher MT, Riffenburgh RH, Kerr S, Manos RE (2008) The outcomes of lumbar microdiscectomy in a young, active population: correlation by herniation type and level. Spine 33:33–38. doi:10.1097/BRS.0b013e31815e3a42

    Article  PubMed  Google Scholar 

  56. Sinigaglia R, Bundy A, Costantini S, Nena U, Finocchiaro F, Monterumici DA (2009) Comparison of single-level L4-L5 versus L5-S1 lumbar disc replacement: results and prognostic factors. Eur Spine J 18(Suppl 1):52–63. doi:10.1007/s00586-009-0992-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Okoro T, Sell P (2010) A short report comparing outcomes between L4/L5 and L5/S1 single-level discectomy surgery. J Spinal Disord Tech 23:40–42. doi:10.1097/BSD.0b013e3181b38537

    Article  PubMed  Google Scholar 

  58. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support from the National Institute of Health (R21AR057989), Synthes, Inc., and the Department of Orthopaedic Surgery at Massachusetts General Hospital.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Li.

Additional information

M. Wu and S. Wang contributed equally to this study.

Appendix: Validation of the DFIS technique in measurement of dynamic human lumbar motion

Appendix: Validation of the DFIS technique in measurement of dynamic human lumbar motion

Experiment setup

A validation study was performed to evaluate the accuracy of the DFIS technique when used to determine human lumbar spine kinematics during dynamic motion. In this validation, a cadaveric human body segment from feet to chest was acquired. The body segment included the entire lumbar spine and had all the surrounding soft tissues intact. Titanium beads (MRI compatible) of 4 mm in diameter were implanted into the L3, L4 and L5 vertebrae by a spine surgeon (Fig. 5). The lumbar spine was then MRI-scanned using the protocol described in the Sect. “Materials and methods”. The contours of L3, L4, L5 vertebrae and the beads were digitized from the MR images to reconstruct their 3D mesh models. A local coordinate system was created for each spine vertebral segment model as described in our previous study [35]. The specimen was then placed in a sitting position and the lumbar spine was manually flexed to simulate a dynamic physiologic flexion–extension motion at a rotation speed of ~50°/second. The test was guided using a timer. Dynamic orthogonal images of the lumbar spine were taken simultaneously from the anteromedial and anterolateral directions using two fluoroscopes (Fig. 2a).

Fig. 5
figure 5

Implantation of metal beads in human cadaveric lumbar spine for RSA validation

The spatial positions of the vertebral bodies during the flexion–extension motion were reproduced in Rhinoceros® software through 3D to 2D imaging matching (Fig. 6), as described in the Sect. “Materials and Method”. To evaluate the accuracy of the image matching technique of DFIS in reproducing vertebral motion, five positions were chosen along the dynamic motion path of the spine: maximum flexion, middle flexion, upright, middle extension and maximum extension. Each position was independently reproduced using both the vertebral body matching technique (DFIS method) and the beads position matching technique (RSA method––gold standard) [35]. The positions and orientations of each vertebra determined using the DFIS and RSA methods were compared to evaluate the accuracy of the DFIS method in determination of dynamic lumbar kinematics.

Fig. 6
figure 6

2D–3D matching of the human cadaveric spine to determine the lumbar positions in space using both the DFIS and RSA methods

Results

The model matching process showed a high accuracy in determination of the positions of the spinal segments (see Table 2). The average translational and rotational accuracy of L3, L4 and L5 vertebrae were within 0.3 mm and 0.7° from the five tested positions along the flexion–extension path.

Table 2 Average differences in 6DOF positions and orientations of lumbar vertebrae determined using the DFIS and RSA methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, S., Driscoll, S.J. et al. Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment. Eur Spine J 23, 2350–2358 (2014). https://doi.org/10.1007/s00586-014-3316-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3316-9

Keywords

Navigation