Skip to main content
Log in

Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Palmitoleic acid (POA) has recently gained attention for its health benefits and as a potential resource for industrial feedstock. This study focused on the use of Saccharomyces cerevisiae, which has a high POA content but low lipid content, for POA production. We created an oleaginous S. cerevisiae as a dga1 mutant overexpressing Dga1p lacking the N-terminal 29 amino acids (Dga1Np). This was performed to further increase POA content in the oleaginous S. cerevisiae through optimization of culture conditions and genetic modifications. We found that high concentrations of methionine (2.0 g/l) increased POA production in a concentration-dependent way, while other amino acids such as cysteine, glycine, and glutamine showed no effect. It was not clear if the effect of methionine was mediated through S-adenosylmethionine, mainly because its addition did not increase POA content as did the addition of methionine. We increased POA content up to 55 % by incubation of the dga1 transformant in a medium containing 2 g/l methionine at lower than normal temperatures ranging from 20 to 25 °C. Cultivation at such temperatures increased dry cell weight, but did not affect the lipid content, thereby increasing total POA production. The effects of methionine and low temperatures (20–25 °C) on POA content were more apparent in the strains overexpressing Dga1Np than those harboring empty vectors, which was consistent with the observation that POA was enriched in triacylglycerol. Overexpression of Ole1p, the enzyme responsible for POA production, did not increase POA content of the dga1 mutant overexpressing Dga1Np, but increased that of the wild-type strain overexpressing Dga1Np. The results suggested that genomic Ole1p in the dga1 mutant was active enough to achieve the optimal POA production under these conditions. Finally, the POA production by the S. cerevisiae transformant was increased 2.5-fold, which demonstrates that oleaginous S. cerevisiae is a potential source of POA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan M, Tucker D, Watson K (2013) Determination and differentiation of triacylglycerol molecular species in Antarctic and non-Antarctic yeasts by atmospheric pressure-chemical ionization-mass spectrometry. J Microbiol Methods 94:249–256

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Gerhold K, Mayers JR, Wiest MM, Satkins SM, Hotamisligil GS (2008) Identification of a lipoline, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Kroon AIPM, Rijken PJ, De Smet CH (2013) Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 52:374–394

    Article  PubMed  Google Scholar 

  • De Smet CH, Vittone E, Scherer M, Houweling M, Liebisch G, Brouwers JF, de Kroon AIPM (2013) The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p. Mol Biol Cell 23:1146–1156

    Article  Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroo K, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in yeast Saccharomyces cerevisiae. Genet 190:317–349

    Article  CAS  Google Scholar 

  • Herman PK (2002) Stationary phase in yeast. Curr Opin Microbiol 5:602–607

    Article  CAS  PubMed  Google Scholar 

  • Hickman MJ, Petti AA, Ho-Shing O, Silverman SJ, Mclsaac RS, Lee TA, Botstein D (2011) Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell 22:4192–4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hon K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690

    Article  Google Scholar 

  • Hunter K, Rose AH (1972) Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochim Biophys Acta 260:639–653

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of 12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic acid and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23:605–612

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara S, Aritomi T, Suga K, Ohtaguchi K, Kobayashi O (2000) Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:568–574

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–653

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H (2007) DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the ∆snf2 disruptant of Saccharomyces cerevisiae. Biochem J 408:61–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Shibakami M (2010) Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the ∆snf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biotechnol 88:105–115

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Sci 330:1355–1358

    Article  CAS  Google Scholar 

  • Kimura K, Kamisaka Y, Uemura H, Yamaoka M (2014) Increase in stearidonic acid by increasing the supply of histidine to oleaginous Saccharomyces cerevisiae. J Biosci Bioeng 117:53–56

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2010) Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 24:2098–2103

    Article  CAS  Google Scholar 

  • Kumar A, John L, Alam MM, Gupta A, Sharma G, Pillai B, Sengupta S (2006) Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Biochem J 396:61–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family. J Biol Chem 276:38862–38869

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ (2012) Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51:350–377

    Article  CAS  PubMed  Google Scholar 

  • Martin CE, Oh C-S, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Takeyama H, Miura Y, Yamazaki T, Furuya H, Sode K (1995) Screening of marine cyanobacteria for high palmitoleic acid production. FEMS Microbiol Lett 133:137–141

    Article  CAS  Google Scholar 

  • Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Mishra G, Whittle E, Pidkowich MS, Bevan SA, Merlo AO, Walsh TA, Shanklin J (2010) Metabolic engineering of seeds can achieve levels of ω-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol 154:1897–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic, London, pp 567–668

    Google Scholar 

  • Rattray JBM (1988) Yeasts. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 555–697

    Google Scholar 

  • Řezanka T, Matoulková D, Kolouchová I, Masák J, Sigler K (2013) Brewer’s yeast as a new source of palmitoleic acid—analysis of triacylglycerols by LC-MS. J Am Oil Chem Soc 90:1327–1342

    Article  Google Scholar 

  • Rizki G, Amaboldi L, Gabrielli B, Yan J, Lee GS, Ng RK, Turner SM, Badger TM, Pitas RE, Maher JJ (2006) Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J Lipid Res 47:2280–2290

    Article  CAS  PubMed  Google Scholar 

  • Schulze I, Hansen S, Grosshans S, Rudszuck T, Ochsenreither K, Syldatk C, Neumann A (2014) Characterization of newly isolated oleaginous yeasts—Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Shui G, Suan XL, Low CP, Chua GH, Goh JSY, Yang H, Wenk MR (2010) Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol BioSyst 6:1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544

    CAS  PubMed  Google Scholar 

  • Sutter BM, Wu X, Laxman S, Tu BP (2013) Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154:403–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li R, Hildebrand DF (2012) Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog Lipid Res 51:340–349

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Kallio HP (2001) Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J Agric Food Chem 49:1939–1947

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-H, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis 10:120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yurie Hatakeyama for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Kamisaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamisaka, Y., Kimura, K., Uemura, H. et al. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae . Appl Microbiol Biotechnol 99, 201–210 (2015). https://doi.org/10.1007/s00253-014-6083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6083-y

Keywords

Navigation