Skip to main content
Log in

Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We constructed beta-glucosidase (BGL)-displaying Corynebacterium glutamicum, and direct l-lysine fermentation from cellobiose was demonstrated. After screening active BGLs, Sde1394, which is a BGL from Saccharophagus degradans, was successfully displayed on the C. glutamicum cell surface using porin as an anchor protein, and cellobiose was directly assimilated as a carbon source. The optical density at 600 nm of BGL-displaying C. glutamicum grown on cellobiose as a carbon source reached 23.5 after 48 h of cultivation, which was almost the same as that of glucose after 24 h of cultivation. Finally, Sde1394-displaying C. glutamicum produced 1.08 g/l of l-lysine from 20 g/l of cellobiose after 4 days of cultivation, which was about threefold higher than the amount of produced l-lysine using BGL-secretory C. glutamicum strains (0.38 g/l after 5 days of cultivation). This is the first report on amino acid production using cellobiose as a carbon source by BGL-expressing C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55–56

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640

    Article  PubMed  CAS  Google Scholar 

  • Gopinath V, Murali A, Dhar KS, Nampoothiri KM (2012) Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl Microbiol Biotechnol 93:95–106

    Article  PubMed  Google Scholar 

  • Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J (2006) The surface S-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiol 152:923–935

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  PubMed  CAS  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Barry CE 3rd, Besra GS, Nikaido H (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Yamada R, Kitahara S, Tanaka T, Fukuda H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of β-glucosidase on its cell surface. Enzym Microb Technol 43:233–236

    Article  CAS  Google Scholar 

  • Nikaido H, Kim SH, Rosenberg EY (1993) Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbial 8:1025–1030

    Article  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699

    Article  PubMed  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  PubMed  CAS  Google Scholar 

  • Soual-Hoebeke E, de Sousa-D’Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G (1999) S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiol 145:3399–3408

    CAS  Google Scholar 

  • Tanaka T, Kawabata H, Ogino C, Kondo A (2011) Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Appl Environ Microbiol 77:6265–6270

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591

    Article  PubMed  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007a) Production of l-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007b) Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  PubMed  CAS  Google Scholar 

  • Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009) Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739

    Article  PubMed  CAS  Google Scholar 

  • Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A (2011) Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:895–901

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB (2012) Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis. Appl Microbiol Biotechnol 93:497–502

    Article  PubMed  CAS  Google Scholar 

  • Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, N., Takahashi, C., Ono-Murota, N. et al. Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol 97, 7165–7172 (2013). https://doi.org/10.1007/s00253-013-5009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5009-4

Keywords

Navigation