Skip to main content
Log in

Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adsul M-G, Singhvi M-S, Gaikaiwari S-A, Gokhale D-V (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312

    Article  CAS  Google Scholar 

  • Beckham G-T, Bomble Y-J, Bayer E-A, Himmel M-E, Crowley M-F (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotech 22:231–238

    Article  CAS  Google Scholar 

  • Brás J-L, Cartmell A, Carvalho A-L, Verzé G, Bayer E-A, Vazana Y, Correia M-A, Prates J-A, Ratnaparkhe S, Boraston A-B, Romão M-J, Fontes C-M, Gilbert H-J (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 108:5237–5242

    Article  Google Scholar 

  • Chen X-A, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, Kitamoto K (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microb 76:2556–2561

    Article  CAS  Google Scholar 

  • Dagel D-J, Liu Y-S, Zhong L, Luo Y, Himmel M-E, Xu Q, Zeng Y, Ding S-Y, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641

    Article  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Teeri T-T, Jones T-A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325

    Article  CAS  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes A-C, Stenstrøm Y, Mackenzie A, Sørlie M, Horn S-J, Eijsink V-G (2011) Cleavage of cellulose by a CBM33 protein. Protein Science 20(9):1479–1483

    Article  CAS  Google Scholar 

  • García-Alvarez B, Melero R, Dias F-M, Prates J-A, Fontes C-M, Smith S-P, Romão M-J, Carvalho A-L, Llorca O (2011) Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 407:571–580

    Article  Google Scholar 

  • Gilad R, Rabinovich L, Yaron S, Bayer E-A, Lamed R, Gilbert H-J, Shoham Y (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185:391–398

    Article  CAS  Google Scholar 

  • Gilligin W, Reese E-T (1954) Evidence for multiple components in microbial cellulases. Can J Microbiol 1:90–107

    Article  Google Scholar 

  • Harris P-V, Welner D, McFarland K-C, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  Google Scholar 

  • Heinzelman P, Komor R, Kanaan A, Romero P, Yu X, Mohler S, Snow C, Arnold F (2010a) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23:871–880

    Article  CAS  Google Scholar 

  • Heinzelman P, Snow C-D, Smith M-A, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold F-H (2010b) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233

    Article  Google Scholar 

  • Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186–36190

    Article  CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  CAS  Google Scholar 

  • Irwin D, Shin D-H, Zhang S, Barr B-K, Sakon J, Karplus P-A, Wilson D-B (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    CAS  Google Scholar 

  • Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 383:144–150

    Article  CAS  Google Scholar 

  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove D-J (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A 105:16876–16881

    Article  CAS  Google Scholar 

  • Kim H-W, Ishikawa K (2011) Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Biochem J 437:223–230

    Article  CAS  Google Scholar 

  • Kim D-M, Umetsu M, Takai K, Matsuyama T, Ishida N, Takahashi H, Asano R, Kumagai I (2011a) Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small 7:656–664

    Article  CAS  Google Scholar 

  • Kim D, Kim S-N, Baik K-S, Park S-C, Lim C-H, Kim J-O, Shin T-S, Oh MJ, Seong C-N (2011b) Screening and characterization of a cellulase gene from the gut microflora of abalone using metagenomic library. J Microbiol 49:141–145

    Article  CAS  Google Scholar 

  • Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri T-T (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346

    Article  CAS  Google Scholar 

  • Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177

    Article  CAS  Google Scholar 

  • Langston J-A, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney M-D (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015

    Article  CAS  Google Scholar 

  • Li J, Du L, Wang L (2010) Glycosidic-bond hydrolysis mechanism catalyzed by cellulase Cel7A from Trichoderma reesei: a comprehensive theoretical study by performing MD, QM, and QM/MM calculations. J Phys Chem B 114:15261–15268

    Article  CAS  Google Scholar 

  • Lupoi J-S, Smith E-A (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108(12):2835–2843

    Article  CAS  Google Scholar 

  • Lynd L-R, Weimer P-J, van Zyl W-H, Pretorius I-S (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66:506–577

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Moran-Mirabal J-M, Bolewski J-C, Walker L-P (2011) Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 155:20–28

    Article  CAS  Google Scholar 

  • Moser F, Irwin D, Chen S, Wilson D-B (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077

    Article  CAS  Google Scholar 

  • Ng I-S, Tsai S-W, Ju Y-M, Yu S-M, Ho T-H (2011) Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour Technol 102:6073–6081

    Article  CAS  Google Scholar 

  • Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaïch JP, Driguez H, Haser R (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J 17:5551–5562

    Article  CAS  Google Scholar 

  • Phillips C, Beeson W, Cate J, Marletta M (2011) Cellobiose dehydrogenase and a copper dependent polysaccharide monooxygenase potentiate fungal cellulose. ACS Chem Biol Oct 25 (e-publish)

  • Quinlan R-J, Sweeney M-D, Lo Leggio L, Otten H, Poulsen J-C, Johansen K-S, Krogh K-B, Jørgensen C-I, Tovborg M, Anthonsen A, Tryfona T, Walter C-P, Dupree P, Xu F, Davies G-J, Walton P-H (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084

    Article  CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles J-K, Jones T-A (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  CAS  Google Scholar 

  • Sakon J, Irwin D, Wilson D-B, Karplus P-A (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    Article  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  Google Scholar 

  • Sandgren M, Ståhlberg J, Mitchinson C (2005) Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol 89:246–291

    Article  CAS  Google Scholar 

  • Spezio M, Wilson D-B, Karplus P-A (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916

    Article  CAS  Google Scholar 

  • Tam R, Saier M-H (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    CAS  Google Scholar 

  • Tambor J-H, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R (2011) Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyze cellulosic substrates. Appl Microbiol Biotechnol June 28 (e-publish)

  • Taylor L, Henrissat B, Coutinho P, Ekborg N, Howard M, Hutcheson S, Weiner R (2006) A complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40. J Bacteriol 188:3849–3861

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Houston D-R, Riemen A-H, Eijsink V-G, van Aalten D-M (2005a) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Horn S-J, van Aalten D-M, Synstad B, Eijsink V-G (2005b) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn S-J, Liu Z, Zhai H, Sørlie M, Eijsink V-G (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  Google Scholar 

  • Vocadlo D-J, Davies G-J (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  CAS  Google Scholar 

  • Vuong T-V, Wilson D-B (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microb 75:6655–6661

    Article  CAS  Google Scholar 

  • Wang T-Y, Chen H-L, Lu M-Y, Chen Y-C, Sung H-M, Mao C-T, Cho H-Y, Ke H-M, Hwa T-Y, Ruan S-K, Hung K-Y, Chen C-K, Li J-Y, Wu Y-C, Chen Y-H, Chou S-P, Tsai Y-W, Chu T-C, Shih C-C, Li W-H, Shih M-C (2011a) Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels 4:24

    Article  CAS  Google Scholar 

  • Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y, Feng Y (2011b) Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biot 91:1353–1363

    Article  CAS  Google Scholar 

  • Watson B, Zhang H, Longmire A, Moon Y-H, Hutcheson S (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans 2-40. J Bacteriol 191:5697–5705

    Article  CAS  Google Scholar 

  • Wilson D-B (2008a) Aerobic microbial cellulase systems. In: Himmel M-E (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, Oxford, pp 374–392

    Google Scholar 

  • Wilson D-B (2008b) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    Article  CAS  Google Scholar 

  • Wilson D-B (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  CAS  Google Scholar 

  • Yan S, Wu G (2011) Searching of predictors to predict pH optimum of cellulases. Appl Biochem Biotechnol 165(3–4):856–869

    Article  CAS  Google Scholar 

  • Yang Y, Zhang S, Howe K, Wilson D-B, Moser F, Irwin D, Thannhauser T-W (2007) A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. J Biomol Tech 18:226–237

    Google Scholar 

  • Zhou F, Chen H, Xu Y (2010) GASdb: a large-scale and comparative exploration database of glycosyl hydrolysis systems. BMC Microbiol 10:69

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the BioEnergy Science Center, a U.S. Department of Energy (DOE) research center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, D.B. Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis. Appl Microbiol Biotechnol 93, 497–502 (2012). https://doi.org/10.1007/s00253-011-3701-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3701-9

Keywords

Navigation