Skip to main content
Log in

Diversity and Ecological Characterization of Sporulating Higher Filamentous Marine Fungi Associated with Spartina maritima (Curtis) Fernald in Two Portuguese Salt Marshes

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungal communities associated with early stages of decomposition of Spartina maritima (Curtis) Fernald were assessed in two geographically distinct salt marshes in Portugal by direct observation of fungal sporulating structures. Twenty-three fungal taxa were identified from 390 plant samples, 11 of which were common to both study sites. Natantispora retorquens, Byssothecium obiones, Phaeosphaeria spartinicola, Phoma sp. 1 and Stagonospora sp. were the most frequent fungal taxa in the studied communities. The fungal species Anthostomella spissitecta, Camarosporium roumeguerii, Coniothyrium obiones, Decorospora gaudefroyi, Halosarpheia trullifera, Leptosphaeria marina and Stagonospora haliclysta were recorded for the first time on S. maritima plants; with the exception of C. roumeguerii and L. marina, all of these species were also new records for Portugal. The differences between species composition of the communities associated with S. maritima were attributed to differences in abiotic conditions of the salt marshes. Although the fungal taxa were distributed differently along the host plants, common species to both fungal communities were found on the same relative position, e.g. B. obiones, Lulworthia sp. and N. retorquens occurred on the basal plant portions, Buergenerula spartinae, Dictyosporium pelagicum and Phoma sp. 1 on the middle plant portions and P. spartinicola and Stagonospora sp. on the top plant portions. The distinct vertical distribution patterns reflected species-specific salinity requirements and flooding tolerance, but specially substrate preferences. The most frequent fungi in both communities also exhibited wider distribution ranges and produced a higher number of fruiting structures, suggesting a more active key role in the decay process of S. maritima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdel-Wahab MA, Bahkali AHA (2012) Taxonomy of filamentous anamorphic marine fungi : morphology and molecular evidence. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 65–90

    Google Scholar 

  2. Alias SA, Jones EBG (2000) Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience 41:431–436

    Article  Google Scholar 

  3. Alias SA, Zainuddin N, Jones EBG (2010) Biodiversity of marine fungi in Malaysian mangroves. Bot Mar 53:545–554

    Article  Google Scholar 

  4. Azevedo E, Rebelo R, Caeiro MF, Barata M (2012) Use of drift substrates to characterize marine fungal communities from the west coast of Portugal. Mycologia 104:623–632

    Article  PubMed  Google Scholar 

  5. Al-Nasrawi HG, Hughes AR (2012) Fungal diversity associated with salt marsh plants Spartina alterniflora and Juncus roemerianus in Florida. Jordan J Biol Sci 5:247–254

    Google Scholar 

  6. Barata M (2002) Fungi on the halophyte Spartina maritima in salt marshes. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 179–193

    Google Scholar 

  7. Barata M (2006) Marine fungi from Mira river salt marsh in Portugal. Rev Iberoam Micol 23:179–184

    Article  PubMed  Google Scholar 

  8. Benner R, Newell SY, Maccubbin AE, Hodson RE (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl Environ Microbiol 48:36–40

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Bergbauer M, Newell SY (1992) Contribution to lignocellulose degradation and DOC formation from a salt marsh macrophyte by the ascomycete Phaeosphaeria spartinicola. FEMS Microbiol Ecol 86:341–348

    Article  CAS  Google Scholar 

  10. Blum LK, Roberts MS, Garland JL, Mills AL (2004) Distribution of microbial communities associated with the dominant high marsh plants and sediments of the United States East Coast. Microb Ecol 48:375–388

    Article  CAS  PubMed  Google Scholar 

  11. Buchan A, Newell SY, Moreta JIL, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol 43:329–340

    Article  CAS  PubMed  Google Scholar 

  12. Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol 69:6676–6687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62

    Article  Google Scholar 

  14. Caetano M, Vale C, Falcão M (2006) Particulate metal distribution in Guadiana estuary punctuated by flood episodes. Estuar Coast Shelf Sci 70:109–116

    Article  Google Scholar 

  15. Caetano M, Fonseca N, Vale RCC (2007) Mobility of Pb in salt marshes recorded by total content and stable isotopic signature. Sci Total Environ 380:84–92

    Article  CAS  PubMed  Google Scholar 

  16. Calado ML, Barata M (2012) Salt marsh fungi. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 345–381

    Google Scholar 

  17. Cartaxana P, Catarino F (2002) Nitrogen resorption from senescing leaves of three salt marsh plant species. Plant Ecol 159:95–102

    Article  Google Scholar 

  18. Castellanos EM, Heredia C, Figueroa ME, Davy AJ (1998) Tiller dynamics of Spartina maritima in successional and non-successional mediterranean salt marsh. Plant Ecol 137:213–225

    Article  Google Scholar 

  19. Castillo JM, Redondo S, Wharmby C, Figueroa ME, Luque T, Castellanos EM, Davy AJ (2005) Environmental determination of shoot height in populations of the cordgrass Spartina maritima. Estuaries 28:761–766

    Article  Google Scholar 

  20. Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa E (2008) Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuar Coast Shelf Sci 78:819–826

    Article  Google Scholar 

  21. Castillo JM, Rubio-Casal AE, Figueroa E (2010) Cordgrass biomass in coastal marshes. In: Momba M (ed) Biomass. Sciyo, Rijeka, pp 1–26

    Google Scholar 

  22. Castro P, Freitas H (2000) Fungal biomass and decomposition in Spartina maritima leaves in the Mondego salt marsh (Portugal). Hydrobiologia 428:171–177

    Article  Google Scholar 

  23. Cavaliere AR (1977) Marine flora and fauna of the Northeastern United States higher fungi: Ascomycetes, Deuteromycetes, and Basidiomycetes. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Washing D.C

    Book  Google Scholar 

  24. Coelho JP, Pereira ME, Duarte AC, Pardal MA (2009) Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication. Mar Pollut Bull 58:358–365

    Article  CAS  PubMed  Google Scholar 

  25. Coelho JP, Pato P, Henriques B, Picado A, Lillebø AI, Dias JM, Duarte AC, Pereira ME, Pardal MA (2014) Long-term monitoring of a mercury contaminated estuary (Ria de Aveiro, Portugal): the effect of weather events and management in mercury transport. Hydrol Process 28:352–360

    Article  CAS  Google Scholar 

  26. Cornick J, Standwerth A, Fisher PJ (2005) A preliminary study of fungal endophyte diversity in a stable and declining bed of Spartina anglica Hubbard. Mycologist 19:24–29

    Article  Google Scholar 

  27. Costa JC, Arsénio P, Monteiro-Henriques T, Neto C, Pereira E, Almeida T, Izco J (2009) Finding the boundary between eurosiberian and mediterranean salt marshes. J Coast Res 1340–1344

  28. Curado G, Rubio-Casal AE, Figueroa E, Grewell BJ, Castillo JM (2013) Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes. Environ Monit Assess 185:8439–8449

    Article  CAS  PubMed  Google Scholar 

  29. Curado G, Rubio-Casal AE, Figueroa E, Castillo JM (2014) Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary. Int J Phytoremediation 16:1209–1220

    Article  CAS  PubMed  Google Scholar 

  30. Dela Cruz TE, Wagner S, Schulz B (2006) Physiological responses of marine Dendryphiella species from different geographical locations. Mycol Prog 5:108–119

    Article  Google Scholar 

  31. Dias JM, Lopes JF (2006) Implementation and assessment of hydrodynamic, salt and heat transport models: the case of Ria de Aveiro Lagoon (Portugal). Environ Model Softw 21:1–15

    Article  Google Scholar 

  32. Dias JM, Lopes JF, Dekeyser I (1999) Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol Acta 22:473–485

    Article  Google Scholar 

  33. Dias JM, Lopes JF, Dekeyser I (2000) Tidal propagation in Ria de Aveiro lagoon, Portugal. Phys Chem Earth, Part B Hydrol Ocean Atmos 25:369–374

    Article  Google Scholar 

  34. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    Article  Google Scholar 

  35. Fell JW, Newell SY (1998) Biochemical and molecular methods for the study of marine fungi. In: Cooksey KE (ed) Molecular approaches to the study of the ocean. Chapman & Hall, London, pp 259–283

    Chapter  Google Scholar 

  36. Ferreira de Carvalho J, Chelaifa H, Boutte J, Poulain J, Couloux A, Wincker P, Bellec A, Fourment J, Bergès H, Salmon A, Ainouche M (2013) Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. Plant Mol Biol 83:591–606

    Article  CAS  PubMed  Google Scholar 

  37. Figueira D, Barata M (2007) Marine fungi from two sandy beaches in Portugal. Mycologia 99:20–23

    Article  CAS  PubMed  Google Scholar 

  38. Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubice CP, Druzhinina IS (eds) Environental and microbial relationships - Mycota IV. Springer, Berlin, pp 301–324

    Google Scholar 

  39. Gessner RV (1977) Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from Rhode Island estuary. Mycologia 69:477–491

    Article  Google Scholar 

  40. Gessner RV, Kohlmeyer J (1976) Geographical distribution and taxonomy of fungi from salt marsh Spartina. Can J Bot 54:2023–2037

    Article  Google Scholar 

  41. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  42. Hodson RE, Christian RR, Maccubbin AE (1984) Lignocellulose and lignin in the salt marsh grass Spartina alterniflora: initial concentrations and short-term, post-depositional changes in detrital matter. Mar Biol 81:1–7

    Article  CAS  Google Scholar 

  43. Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y (2011) Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol Sin 30:118–123

    Article  CAS  Google Scholar 

  44. Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Article  Google Scholar 

  45. Hyde KD, Sarma VV (2000) Pictorial key to higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology—a practical approach. Fungal Diversity Press, Hong Kong, pp 205–270

    Google Scholar 

  46. Hyde KD, Sarma VV (2006) Biodiversity and ecological observations on filamentous fungi of mangrove palm Nypa fruticans Wurumb (Liliopsida-Arecales) along the Tutong river, Brunei. Indian J Mar Sci 35:297–307

    Google Scholar 

  47. Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Berbee ML (2002) Decorospora, a new genus for the marine ascomycete Pleospora gaudefroyi. Mycologia 94:651–659

    Article  PubMed  Google Scholar 

  48. Jones EBG (2000) Marine fungi : some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  49. Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  50. Jones EBG, Jennings DH (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc 47:619–625

    Article  Google Scholar 

  51. Jones EBG, Kuthubutheen AJ (1989) Malaysian mangrove fungi. Sydowia 41:160–169

    Google Scholar 

  52. Jones EBG, Vrijmoed LLP, Alias SA (1998) Intertidal marine fungi from San Juan Island and comments on temperate water species. Bot J Scotl 50:177–184

    Article  Google Scholar 

  53. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  54. Khan SS, Manimohan P (2011) Diversity and abundance of marine fungi on driftwood collected from Kerala State and Lakshadweep Islands, India. Mycosphere 2:223–229

    Google Scholar 

  55. Kilsby CG, Tellier SS, Fowler HJ, Howels TR (2007) Hydrological impacts of climate change on the Tejo and Guadiana Rivers. Hydrol Earth Syst Sci 11:1175–1189

    Article  Google Scholar 

  56. Kis-Papo (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community—its organization and role in the ecosystem. Taylor & Francis, Boca Raton, pp 61–92

    Chapter  Google Scholar 

  57. Kohlmeyer J (1974) On the definition and taxonomy of higher marine fungi. Veröff Inst Meeresforsch Bremerh 5:263–286

    Google Scholar 

  58. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology—the higher fungi. Academic Press, Inc., New York

    Google Scholar 

  59. Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Article  Google Scholar 

  60. Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res News 105:1411–1412

    Article  Google Scholar 

  61. Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and Spartina: New marine species of Anthostomella, with a list of marine fungi known on Spartina. Mycol Res 106:365–374

    Article  Google Scholar 

  62. Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1995) Fungi on Juncus roemerianus. New marine and terrestrial ascomycetes*. Mycol Res 100:393–404

    Article  Google Scholar 

  63. Kohlmeyer J, Volkmann-Kohlmeyer B, Newell SY (2004) Marine and estuarine mycelial eumycota and oomycota. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi—inventory and monitoring methods. Elsevier Academic Press, San Diego, pp 533–545

    Chapter  Google Scholar 

  64. Kohlmeyer J, Volkmann-Kohlmeyer B, Tsui CKM (2005) Fungi on Juncus roemerianus. 17. New ascomycetes and the hyphomycete genus Kolletes gen. nov. Bot Mar 48:306–317

    Article  Google Scholar 

  65. Lyons JI, Newell SY, Buchan A, Moran MA (2003) Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microb Ecol 45:270–281

    Article  CAS  PubMed  Google Scholar 

  66. Lyons JI, Alber M, Hollibaugh JT (2010) Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from central California estuaries. Oecologia 162:435–442

    Article  PubMed  Google Scholar 

  67. Maccubbin AE, Hodson RE (1980) Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl Environ Microbiol 40:735–740

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Manimohan P, Amritha M, Sairabanu N (2011) A comparison of diversity of marine fungi on three co-habiting mangrove plants. Mycosphere 2:533–538

    Google Scholar 

  69. Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M (2001) Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience 42:455–459

    Article  CAS  Google Scholar 

  70. Morales JA (1997) Evolution and facies architecture of the mesotidal Guadiana River delta (S.W. Spain-Portugal). Mar Geol 138:127–148

    Article  Google Scholar 

  71. Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Bio Ecol 200:187–206

    Article  Google Scholar 

  72. Newell SY (2001) Spore-expulsion rates and extents of blade occupation by ascomycetes of the smooth-cordgrass standing-decay system. Bot Mar 44:277–285

    Article  Google Scholar 

  73. Newell SY (2001) Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnol Oceanogr 46:573–583

    Article  Google Scholar 

  74. Newell SY, Fallon RD (1989) Litterbags, leaf tags, and decay of nonabscised intertidal leaves. Can J Bot 67:2324–2327

    Article  Google Scholar 

  75. Newell SY, Wasowski J (1995) Sexual productivity and spring intramarsh distribution of a key salt-marsh microbial secondary producer. Estuaries 18:241–249

    Article  Google Scholar 

  76. Newell SY, Wall VD (1998) Response of saltmarsh fungi to presence of mercury and polychlorinated biphenyls at a Superfund Site. Mycologia 90:777–784

    Article  CAS  Google Scholar 

  77. Newell SY, Porter D (2000) Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 159–185

    Google Scholar 

  78. Newell SY, Zakel KL (2000) Measuring summer patterns of ascospore release by saltmarsh fungi. Mycoscience 41:211–215

    Article  Google Scholar 

  79. Newell SY, Fallon RD, Miller JD (1989) Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Mar Biol 101:471–481

    Article  Google Scholar 

  80. Newell SY, Arsuffi TL, Palm LA (1996) Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades. Oecologia 108:495–502

    Article  Google Scholar 

  81. Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech 33:32–46

    Article  CAS  PubMed  Google Scholar 

  82. Newell SY, Blum LK, Crawford RE, Dai T, Dionne M (2000) Autumnal biomass and potential productivity of salt marsh fungi from 29° to 43° north latitude along the United States Atlantic Coast. Appl Environ Microbiol 66:180–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Newell SY, Wall VD, Maruya KA (2000) Fungal biomass in saltmarsh grass blades at two contaminated sites. Arch Environ Contam Toxicol 38:268–273

    Article  CAS  PubMed  Google Scholar 

  84. Oliveira M, Ahmad I, Maria VL, Pacheco M, Santos MA (2010) Monitoring pollution of coastal lagoon using Liza aurata kidney oxidative stress and genetic endpoints: an integrated biomarker approach. Ecotoxicology 19:643–653

    Article  CAS  PubMed  Google Scholar 

  85. Otero XL, Sánchez JM, Macías F (2000) Nutrient status in tall and short forms of Spartina maritima in the salt marshes of ortigueira (NW Iberian Peninsula) as related to physicochemical properties of the soils. Wetlands 20:461–469

    Article  Google Scholar 

  86. Pang K-L, Chow RKK, Chan C-W, Vrijmoed LLP (2011) Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res 30:1–5

    Article  Google Scholar 

  87. Peña NI, Arambarri AM (1996) Hongos marinos lignícolas de Mar del Plata (provincia de Buenos Aires, Argentina) II. Darwiniana 34:293–298

    Google Scholar 

  88. Peña NI, Arambarri AM (1998) Hongos marinos lignícolas de la laguna costera de Mar Chiquita (provincia de Buenos Aires, Argentina) I. Ascomycotina y Deuteromycotina sobre Spartina densiflora. Darwiniana 35:61–67

  89. Pereira ME, Lillebø AI, Pato P, Válega M, Coelho JP, Lopes CB, Rodrigues S, Cachada A, Otero M, Pardal MA, Duarte AC (2009) Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environ Monit Assess 155:39–49

    Article  CAS  PubMed  Google Scholar 

  90. Poon MOK, Hyde KD (1998) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–156

    Google Scholar 

  91. Poon MOK, Hyde KD (1998) Evidence for the vertical distribution of saprophytic fungi on senescent Phragmites australis culms at Mai Po marshes, Hong Kong. Bot Mar 41:285–292

    Google Scholar 

  92. Prasannarai K, Sridhar KR (2001) Diversity and abundance of higher marine fungi on woody substrates along the west coast of India. Curr Sci 81:304–311

    Google Scholar 

  93. Rodrigues M, Oliveira A, Queiroga H, Brotas V (2012) Seasonal and diurnal water quality and ecological dynamics along a salinity gradient (Mira channel, Aveiro lagoon, Portugal). Procedia Environ Sci 13:899–918

    Article  CAS  Google Scholar 

  94. Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ (1995) Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia 295:119–126

    Article  Google Scholar 

  95. Samiaji J, Barlocher F (1996) Geratology and decomposition of Spartina alterniflora Loisel in a New Brunswick saltmarsh. J Exp Mar Bio Ecol 201:233–252

    Article  Google Scholar 

  96. Sánchez JM, Otero XL, Izco J, Macías F (1997) Growth form and population density of Spartina maritima (Curtis) Fernald in northwest Spain. Wetlands 17:368–374

    Article  Google Scholar 

  97. Sánchez JM, SanLeon DG, Izco J (2001) Primary colonisation of mudflat estuaries by Spartina maritima (Curtis) Fernald in Northwest Spain: vegetation structure and sediment accretion. Aquat Bot 69:15–25

    Article  Google Scholar 

  98. Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  99. Serôdio J, Catarino F (2000) Modelling the primary productivity of intertidal microphytobenthos: time scales of variability and effects of migratory rhythms. Mar Ecol Prog Ser 192:13–30

    Article  Google Scholar 

  100. Sguros PL, Simms J (1964) Role of marine fungi in the biochemistry of the oceans—IV Growth responses to seawater inorganic macroconstituents. J Bacteriol 88:346–355

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Shoemaker RA, Babcock CE (1989) Phaeosphaeria. Can J Bot 67:1500–1599

    Article  Google Scholar 

  102. Sousa AI, Lillebø AI, Caçador I, Pardal MA (2008) Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environ Pollut 156:628–635

    Article  CAS  PubMed  Google Scholar 

  103. Tan TK, Leong WF, Jones EBG (1989) Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can J Bot 2686–2691

  104. Torzilli AP, Andrykovitch G (1986) Degradation of Spartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Can J Bot 64:2211–2215

    Article  CAS  Google Scholar 

  105. Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM (2006) A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698

    Article  CAS  PubMed  Google Scholar 

  106. Van Ryckegem GV, Verbeken A (2005) Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. I. Leaf sheaths. Fungal Divers 19:157–187

    Google Scholar 

  107. Van Ryckegem GV, Verbeken A (2005) Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. II. Stems. Fungal Divers 20:209–233

    Google Scholar 

  108. Van Ryckegem GV, Gessner MO, Verbeken A (2007) Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition. Microb Ecol 53:600–611

    Article  PubMed  Google Scholar 

  109. Vrijmoed LLP (2000) Isolation and culture of higher filamentous fungi. In: Hyde KD, Pointing SB (eds) Marine Mycology—a practical approach. Fungal Diversity Press, Hong Kong, pp 1–20

    Google Scholar 

  110. Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 102:513–521

    Article  PubMed  Google Scholar 

  111. Zhou D, Hyde KD (2001) Host-specificity, host- exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Cristina Oliveira and Rita Severino for their precious help in the culture experiment. This study was supported financially by Foundation for Science and Technology (FCT) through a PhD grant (SFRH/BD/48525/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria da Luz Calado.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calado, M.d., Carvalho, L., Pang, KL. et al. Diversity and Ecological Characterization of Sporulating Higher Filamentous Marine Fungi Associated with Spartina maritima (Curtis) Fernald in Two Portuguese Salt Marshes. Microb Ecol 70, 612–633 (2015). https://doi.org/10.1007/s00248-015-0600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0600-0

Keywords

Navigation