Skip to main content

Advertisement

Log in

Physiological responses of marine Dendryphiella species from different geographical locations

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The saprobic, cosmopolitan, marine fungi Dendryphiella arenaria and Dendryphiella salina, isolated from various plant and algal substrates from different geographical locations and climatic zones, were studied for their adaptations to the abiotic and biotic parameters commonly found in their natural marine habitats. All the tested strains of D. arenaria and D. salina grew optimally on culture media with added marine salts, at pH values between 6.5 and 8.0 and at an incubation temperature of 25°C. The D. arenaria strains had faster mean colony extension rates under all conditions of culture. All strains exhibited an increased salt optimum with increasing incubation temperature. The TLC profiles of strains of the two species were similar. The culture extracts were antimicrobial, though production of the biologically active metabolites was strain-specific. There were no significant correlations between source of origin and responses to the investigated parameters. These results demonstrate phenotypic plasticity and the ability of each isolate to adapt to diverse biotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresforsch Bremerhaven 5(Suppl):301–320

    Google Scholar 

  • Curran PMT (1980) The effect of temperature, pH, light and dark on the growth of fungi from Irish coastal waters. Mycologia 72:350–358

    Article  Google Scholar 

  • Duffy AP, Curran PMT, Muircheartaigh IGO (1991) Effect of temperature and nutrients on spore germination in marine and non-marine fungi. Crypt Bot 2(3):125–129

    Google Scholar 

  • Edwards J, Chamberlain D, Brosnan G, West D, Stanley MS, Clipson NJW, Hooley P (1998) A comparative physiological and morphological study of Dendryphiella salina and D. arenaria in relation to adaptation to life in the sea. Mycol Res 102 (10):1198–1202

    Article  Google Scholar 

  • Ellis MB (1976) More dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, UK

    Google Scholar 

  • Frank JM (1998) Special metabolites in relation to conditions of growth. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 321–344

    Google Scholar 

  • Genilloud O, Pelaez F, Gonzalez I, Diez MT (1994) Diversity of actinomycetes and fungi on seaweeds from the Iberian Coast. Microbiologia Sem 10:413–422

    CAS  Google Scholar 

  • Gessner RV (1980) Degrading enzyme production by salt-marsh fungi. Bot Mar 23:133–139

    CAS  Google Scholar 

  • Grant WD, Rhodes LL (1992) Cell-bound and extracellular laminarinase activity in Dendryphiella salina and five other marine fungi. Bot Mar 35:503–511

    CAS  Google Scholar 

  • Guerriero A, D’Ambrosia M, Cuomo V, Vanzanella F, Pietra F (1988) Dendryphiellin A, the first fungal trinor-eremophilane. Isolation from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv Chim Acta 71:57–61

    Article  CAS  Google Scholar 

  • Guerriero A, D’Ambrosia M, Cuomo V, Vanzanella F, Pietra F (1989) Novel trinor-eremophilanes (dendryphiellin B, C, and D), eremophilanes (dendryphiellin E, F, and G), and branched C9-carboxylic acids (dendryphiellic Acid A and B) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv Chim Acta 72:438–446

    Article  CAS  Google Scholar 

  • Guerriero A, Cuomo V, Vanzanella F, Pietra F (1990) A novel glyceryl ester (glyceryl dendryphiellate A), a trinor-eremophilane (dendryphiellin A1), and eremophilanes (dendryphiellin E1 and E2) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv Chim Acta 73:2090–2096

    Article  CAS  Google Scholar 

  • Höller U, Wright AD, Matthée GF, König GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroff Inst Meeresforsch Bremerhav Sonderbd 5:419–441

    Google Scholar 

  • Jones EBG (1962) Marine fungi. Trans Br Mycol Soc 45(1):93–114

    Google Scholar 

  • Jones EBG, Byrne PJ (1976) Physiology of the higher marine fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 135–175

    Google Scholar 

  • Jones EBG, Jennings DH (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc 47(4):619–625

    Google Scholar 

  • Jones EBG, Oliver AC (1964) Occurrence of aquatic Hyphomycetes on wood submerged in fresh and brackish water. Trans Br Mycol Soc 47(1):45–48

    Google Scholar 

  • Kirk PW, Brandt JM (1980) Seasonal distribution of lignicolous marine fungi in the Lower Chesapeake Bay. Bot Mar 13:657–668

    Google Scholar 

  • Kirk PW, Gordon AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80(6):776–782

    Article  CAS  Google Scholar 

  • Kohlmeyer J (1983) Geography of marine fungi. Aust J Bot Suppl Ser 10:67–76

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100(12):6916–6921

    Article  PubMed  CAS  Google Scholar 

  • Lorenz R, Molitoris HP (1992) Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi. Can J Bot 70:2111–2115

    Article  Google Scholar 

  • MacDonald MJ, Speedie MK (1982) Cell-associated and extracellular enzyme activity in the marine fungus Dendryphiella arenaria. Can J Bot 60:838–844

    Article  CAS  Google Scholar 

  • Miller JD, Whitney NJ (1981) Fungi from the Bay of Fundy II. Observations on fungi from living and cast seaweeds. Bot Mar 24:405–411

    Google Scholar 

  • Newell SY (1981) Fungi and bacteria in or on leaves of eelgrass (Zostera marina L.) from Chesapeake Bay. Appl Environ Microbiol 41(5):1219–1224

    PubMed  Google Scholar 

  • Newell SY, Fell JW (1980) Mycoflora of turtlegrass (Thalassia testudinum König) as recorded after seawater incubation. Bot Mar 23:265–275

    Google Scholar 

  • Otsuka T, Shibata T, Tsurumi Y, Takase S, Okuhara M, Terano H, Kohsaka M, Imanaka H (1992) A new angiogenesis inhibitor, FR-111142. J Antibiot 45(3):348–354

    PubMed  CAS  Google Scholar 

  • Panebianco C (1994) Temperature requirements of selected marine fungi. Bot Mar 37:157–161

    Article  Google Scholar 

  • Pugh GJF (1962) Studies on fungi in coastal soils II. Fungal ecology in a developing salt marsh. Trans Br Mycol Soc 45(4):560–566

    Article  Google Scholar 

  • Pugh GJF (1974) Fungi in intertidal regions. Veroff Inst Meeresforsch Bremerhaven 5(Suppl):403–418

    Google Scholar 

  • Pugh GJF, Beeftink WG (1980) Fungi in coastal and inland salt marshes. Bot Mar 13:651–656

    Google Scholar 

  • Richie D (1957) Salinity optima for marine fungi affected by temperature. Am J Bot 44:870–874

    Article  Google Scholar 

  • Rohrmann S, Molitoris HP (1992) Screening for wood-degrading enzymes in marine fungi. Can J Bot 70:2116–2123

    Article  CAS  Google Scholar 

  • Rohrmann S, Lorenz R, Molitoris HP (1992) Use of natural and artificial seawater for investigation of growth, fruit body production and enzyme activities in marine fungi. Can J Bot 70:2106–2110

    Article  CAS  Google Scholar 

  • Schatz S (1980) Degradation of Laminaria saccharina by higher fungi: a preliminary report. Bot Mar 23:617–622

    Google Scholar 

  • Schatz S (1984) Degradation of Laminaria saccharina by saprobic fungi. Mycologia 76(3):426–432

    Article  Google Scholar 

  • Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 204/205:589–596

    Article  Google Scholar 

  • Schaumann K, Weide G (1995) Efficiency of uronic acid uptake in marine alginate-degrading fungi. Helgol Meeresunters 49:159–167

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99(8):1007–1015

    Article  CAS  Google Scholar 

  • Shimokawa T, Yoshida S, Takeuchi T, Murata K, Kobayashi H, Kusakabe I (1997) Purification and characterization of extracellular poly(β-D-1,4-mannuronide) lyase from Dendryphiella salina IFO 32139. Biosci Biotechnol Biochem 61(4):636–640

    PubMed  CAS  Google Scholar 

  • Strongman D, Miller JD, Whitney NJ (1985) Lignicolous marine fungi from Prince Edward island with a description of Didymosphaeria lignomaris sp. nov. Proc N S Inst Sci 35:99–105

    Google Scholar 

  • Wainwright M (1980) Alginate degradation by the marine fungus Dendryphiella salina. Mar Bio Lett 1:351–354

    CAS  Google Scholar 

  • Wainwright M, Sherbrock-Cox V (1981) Factors influencing alginate degradation by the marine fungi: Dendryphiella salina and Dendryphiella arenaria. Bot Mar 24:489–491

    Article  CAS  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107 (12):1451–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Siegfried Draeger (Technical University Braunschweig, Germany) for aid in the identification of the fungal strains and Prof. Dr. Irineo Dogma, Jr. (University of Santo Tomas, the Philippines) and PD Dr. Christine Boyle for the critical reading and evaluation of the paper. T. E. dela Cruz would like to thank the Deutscher Akademischer Austausch Dienst (DAAD) for the graduate scholarship grant, and BS thanks BASF AG and the Bundesministerium für Bildung und Forschung for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Edison dela Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dela Cruz, T.E., Wagner, S. & Schulz, B. Physiological responses of marine Dendryphiella species from different geographical locations. Mycol Progress 5, 108–119 (2006). https://doi.org/10.1007/s11557-006-0504-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0504-y

Keywords

Navigation