Skip to main content

Trichoderma spp.: Expanding Potential beyond Agriculture

  • Chapter
  • First Online:
Trichoderma: Agricultural Applications and Beyond

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

Abstract

Trichoderma is a genetically diverse group of fungi present in different ecological niches with multiple capabilities. Most of the Trichoderma spp. are reported as plant growth promoters and efficient biocontrol agents against various biotic and biotic stresses. Besides that genus Trichoderma is also utilized for bioremediation of heavy metal contamination, pesticide residue degradation, and industrial purposes for food, beverages, nanoparticles, and pharmaceuticals. These fungal species produce a vast variety of extracellular enzymes including cellulase, which play a key role in the degradation of complex polysaccharides and other organic compounds. The application of these enzymes into industries has been an economically and environmentally sustainable approach for producing high-quality products. As Trichoderma genomic sequences are now available in the public domain, it can be explored to search its wider applicability in the scientific arena. This chapter presents an overview of the application of Trichoderma beyond the agriculture areas like food industries, pharmaceuticals, beverages, bioremediation, and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Chao LT, Sze SK (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics 11:M111.012419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adav SS, Ravindran A, Chao LT, Tan L, Singh S, Sze SK (2011) Proteomic analysis of pH and strains dependent protein secretion of Trichoderma reesei. J Proteome Res 10:4579–4596

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Sze SK (2014) Trichoderma secretome: an overview. In: biotechnology and biology of Trichoderma. Elsevier, pp 103–114

    Google Scholar 

  • Alvarez-Rodriguez ML, Lopez-Ocana L, Lopez-Coronado JM, Rodriguez E, Martinez MJ, Larriba G, Coque JJR (2002) Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O methylation of n 2,4,6-trichlorophenol. Appl Environ Microbiol 68:5860–5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ande SR, Fussi H, Knauer H, Murkovic M, Ghisla S, Frohlich KU, Macheroux P (2008) Induction of apoptosis in yeast by L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Yeast 25:349–357

    Article  CAS  PubMed  Google Scholar 

  • Argumedo-Delira R, Alarcón A, Ferrera-Cerrato R, Almaraz JJ, Peña-Cabriales JJ (2012) Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo [a] pyrene. J Env Manage 95:S291–S299

    Article  CAS  Google Scholar 

  • Arisan-Atac I, Hodits R, Kristufek D, Kubicek CP (1993) Purification, and characterization of a β-mannanase of Trichoderma reesei C-30. Appl Microbiol Biotechnol 39(1):58–62

    Article  CAS  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257

    Article  CAS  PubMed  Google Scholar 

  • Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361

    Article  CAS  Google Scholar 

  • Bayitse, R., Hou, X., Laryea, G., & Bjerre, A. B. (2015). Protein enrichment of cassava residue using Trichodermapseudokoningii (ATCC 26801). AMB Express,5(1), 80.

    Google Scholar 

  • Bell AA, Wheeler MH, Liu J, Stipanovic RD, Puckhaber LS, Orta H (2003) United States department of agriculture-agricultural research service studies on polyketide toxins of Fusarium oxysporum f. sp. vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39(2):214–228

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. Var. foliosa bailey) in cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Cardoso Lopes FA, Steindorff AS, Geraldine AM, Brandao RS, Monteiro VN, Junior ML, Guedes Coelho AS, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824

    Article  CAS  Google Scholar 

  • Chakraborty S, Yadav G, Saini JK, Kuhad RC (2019) Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 99113). Elsevier

    Google Scholar 

  • Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S (2010) Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochem 45:507–513

    Article  CAS  Google Scholar 

  • Cheng H, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC (2011) Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. J Agric Food Chem 59:9142–9149

    Article  CAS  PubMed  Google Scholar 

  • Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE (2011) Proteomics based compositional analysis of complex cellulase -hemicellulase mixtures. J Proteome Res 10:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Ciscotto P, Machado RA, de Avila EA, Coelho J, Oliveira CG, Farais LM, de Carvalho MA, Maria WS, Sanchez EF, Borges A, Chavez-Olortegui C (2009) Antigenic microbial and parasitic properties of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 53:330–341

    Article  CAS  PubMed  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    Article  CAS  Google Scholar 

  • Coque JJ, Alvarez-Rodríguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 69:5089–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Marsili E (2011) Bioinspired metal nanoparticle: synthesis, properties and application. Nanomaterials: 253–274

    Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma: III. Hyphal interactions. Trans Br Mycol Soc 57:363–369

    Article  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 16:749–759

    Article  CAS  Google Scholar 

  • Errasquın EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venketesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR (2016) Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods. Data Brief 8:588–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuglsang CC, Johansen C, Christgau S, Adler Nissen J (1995) Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci Technol 6(12):390–396

    Article  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  PubMed  Google Scholar 

  • Galante Y, De Conti A, Monteverdi R (1998) Application of Trichoderma enzymes in the food and feed industry. In: Harman G, Kubicek C (eds) Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol 2, pp 327–342

    Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides a and B, cytotoxic modified dipeptides from the marine derived fungus Trichoderma virens. J Nat Pro 66:423–426

    Article  CAS  Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–800

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hasan S (2016) Potential of Trichoderma sp. in bioremediation: a review. J Basic Appl Eng Res 3:776–779

    Google Scholar 

  • Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vagvolgyi C, Kredics L (2007) Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97:532–537

    Article  CAS  PubMed  Google Scholar 

  • Holker U, Dohse J, Höfer M (2002) Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol 47:423–427

    Article  CAS  Google Scholar 

  • Howden AJ, Preston GM (2009) Nitrilase enzymes and their role in plant–microbe interactions. Microb Biotechnol 2(4):441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyos-Carvajal L, Bissett J (2011) Biodiversity of Trichoderma in neotropics. In: Grillo, O, Venora G. (Eds.), The dynamical processes of biodiversity – case studies of evolution and spatial distribution, Intech, pp. 303–320

    Google Scholar 

  • Janssens L, de Pooter HL, Vandamme EJ, Schamp NM (1992) Production of flavours by microorganisms. Process Biochem 27:195–215

    Article  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98(2):533–544

    Article  CAS  PubMed  Google Scholar 

  • Keszler A, Forgacs E, Kotal L, Vizcaino JA, Monte E, Garcia-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid phase extraction and gas chromatography-mass spectroscopy. J Chromatograph Sci 38:421–424

    Article  CAS  Google Scholar 

  • Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 24:298–309

    Article  CAS  PubMed  Google Scholar 

  • Kraus G, Druzhinina I, Bissett J, Prillinger HJ, Szakacs G, Gams W, Kubicek CP (2004) Trichoderma brevicompactum sp. nov. Mycologia 96:1059–1073

    Article  PubMed  Google Scholar 

  • Kredics L, Antal Z, Doczi I, Manczinger L, Kevei F, Nagy E (2003) Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 50:105–117

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Diczi I, Antal Z, Bartyik K, Molnar EG, Manczinger L, Hatvani L, Vagvolgyi C, Nagy E (2006) Emergence of the filamental fungus opportunist Trichoderma longibrachiatum in Hungary. Acta Microbiol Immunol Hung 53(3):305

    Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/ Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9:753–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhls K, Lieckfeldt E, Borner T, Gueho E (1999) Molecular re-identification of human pathogenic Trichoderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med Mycol 37:25–33

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC (2009) Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J Agric Food Chem 57:7288–7292

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from 'omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Lu QM, Wei Q, Jin Y, Wei JF, Wang WY, Xiong YL (2002) L-amino acid oxidase from Trimeresurus jerdonii snake venom: purification, characterization, platelet aggregation-inducing and antibacterial effects. J Nat Toxins 11:345–352

    CAS  PubMed  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation—prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • Mach R, Zeilinger S (2003). Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60(5):515–522

    Google Scholar 

  • Marques SF, Minafra CS, Cafe MB, Stringhini JH, Ulhoa CJ (2018) Production and characterization of a Trichoderma harzianum multienzyme complex and its application in broiler Chicks' diets. Curr Biotechnol 7(1):26–33

    Article  CAS  Google Scholar 

  • Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikosh M (2001) Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience 42:455–459

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, PKale S (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103–075110

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soilborne plant pathogens FAO. Plant Prot Bull 40:21–30

    Google Scholar 

  • Nevalainen KH (2017). The molecular biology of Trichoderma and its application to the expression of both homologous and heterologous genes. In Molecular Industrial Mycology (pp. 129–148). Routledge

    Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma-reesei. J Biotechnol 37(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermo tolerant endo-1,4-beta-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41:777–783

    Article  CAS  PubMed  Google Scholar 

  • Nwuche CO, Ugoji EO (2008) Effect of heavy metal pollution on the soil microbial activity. J Environ Sci 5:409–414

    CAS  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled Kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–44

    Article  CAS  PubMed  Google Scholar 

  • Olsson L, Christensen TMIE, Hansen KP, Palmqvist EA (2003) Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei rut C-30. Enzym Microb Technol 33:612–619

    Article  CAS  Google Scholar 

  • Park MS, Bae KS, Yu SH (2006) Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiol 34:111–113

    Article  Google Scholar 

  • Patel N, Shahane S, Majumdar R, Mishra U (2019) Mode of action, properties, production, and application of Laccase: a review. Recent Pat Biotechnol 13(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Patton S (1950) The methyl ketones of blue cheese and their relation to its flavor. J Dairy Sci 33:680–684

    Article  CAS  Google Scholar 

  • Perez-Gonzalez JA, Gonzalez R, Querol A, Sendra J, Ramon D (1993) Construction of a recombinant wine yeast strain expressing β-(1,4)-endoglucanase and its use in microvinification processes. Appl Environ Microbiol 59:2801–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persoon CH (1794) Disposita methodica fungorum. Romer’s Neues Mag Bot 1:81–128

    Google Scholar 

  • Pokrovsky VS, Treshalina HM, Lukasheva EV, Sedakova LA, Medentzev AG, Arinbasarova AY, Berezov TT (2013) Enzymatic properties and anticancer activity of L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anti-Cancer Drugs 24(8):846–851

    Article  CAS  PubMed  Google Scholar 

  • Prak S, Gunata Z, Guiraud JP, Schorr-Galindo S (2007) Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiol 24:271–280

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav P, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai B (ed) Applied mycology. CABI publication, UK, pp 258–267

    Chapter  Google Scholar 

  • Ram RM, Singh HB (2017) Trichoderma spp: Nature’s gift to mankind. In: Plant systematics & Biotechnology: Challenges and opportunities. Today and tomorrow’s printers and publishers, 133–141

    Google Scholar 

  • Rebello S, Aneesh EM, Sindhu R, Binod P, Pandey A, Gnansounou E (2019) Enzyme Catalysis: a Workforce to Productivity of Textile Industry. A handbook on high value fermentation products, Volume 2: Human Welfare, 49

    Google Scholar 

  • Ruiz N, Dubois N, Wielgosz C, Robiou PT, Berge EP, Pouchus YF, Barnathan G (2007) Lipid content and fatty acid composition of a marine-derived Trichoderma longibrachiatum strain cultured by agar surface and submerged fermentations. Process Biochem 42:676–680

    Article  CAS  Google Scholar 

  • Sahu A, Manna MC, Mandal A, Rao SA, Thakur J (2012) Exploring bioaccumulation efficacy of Trichoderma viride: an alternative bioremediation of cadmium and Lead. Natl Acad Sci Lett 35:299–302

    Article  CAS  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycol 94:146–170

    Article  Google Scholar 

  • Saravanakumar K, Vivek R, Boopathy NS, Yaqian L, Kathiresan K, Chen J (2015) Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma. J Appl Biomed 13(3):199–212

    Article  Google Scholar 

  • Sarhy-Bagnon V, Lozano P, Saucedo Castañeda G, Roussos S (2000) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109

    Article  CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiquee S, Yusof NA, Salleh AB, Tan SG, Abu Bakar F (2011) Electrochemical DNA biosensor for the detection of Trichoderma harzianum based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator. Microchim Acta 172:357–363

    Article  CAS  Google Scholar 

  • Sing NN, Zulkharnain A, Roslan HA, Assim Z, Husaini A (2014) Bioremediation of PCP by Trichoderma and Cunninghamella strains isolated from sawdust. Braz Arch Biol Technol 57(6):811–820

    Article  CAS  Google Scholar 

  • Singh HB (2014) Management of plant pathogens with microorganisms. Proceedings of National Academy of Science 80:443–454

    Google Scholar 

  • Singh HB, Singh DP (2009) From biological control to bioactive metabolites: prospects with Trichoderma for safe human food. Pertanika Jn Trop Agric Sci 32:99–110

    Google Scholar 

  • Singh P, Singh J, Rajput RS, Vaishnav A, Ray S, Singh RK, Singh HB (2019a) Exploration of multitrait antagonistic microbes against Fusarium oxysporum f. sp. lycopersici. J Appl Nat Sci 11:503–510

    Article  CAS  Google Scholar 

  • Singh P, Singh J, Rajput RS, Vaishnav A, Ray S, Singh RK, Singh HB (2019b) Trichoderma mediated seed biopriming augments antioxidant and phenylpropanoid activities in tomato plant against Sclerotium rolfsii. J Pharma Phytochem 8:2641–2647

    Google Scholar 

  • Singh HB, Singh BN, Singh SP, Nautiyal CS (2010) Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresour Technol 101:6444–6453

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. European J Plant Pathol 131:121–134

    Article  CAS  Google Scholar 

  • Sinthujah S, Samarakoon SR, Tennakoon KH, Attanayake RN, Weerakoon G, Gunasegara DS, Paranagama PA (2017) Anticancer activity of Trichoderma harzianum extract against NCI-H292 lung cancer cells. International Research Symposium on Pure and Applied Sciences, 2017 Faculty of Science, University of Kelaniya, Sri Lanka

    Google Scholar 

  • Sivasithamparam K, Ghisalbarti E (1998) Secondary metabolism. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, Basic biology, taxonomy and genetics, vol 1. Taylor and Francis London, UK, pp 139–191

    Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution bysoil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  PubMed  Google Scholar 

  • Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. Ind Microbiol Biotechnol 38:1145–1159

    Article  CAS  Google Scholar 

  • Sun Y, Tian L, Huang J, Ma HY, Zheng Z, Yasukawa K, Pei YH (2008) Novel polyketides from the marine-derived fungus Trichoderma reesei. Oncol Lett 10(3):393–396

    CAS  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A, Pabel CT, Anr AC, Muller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microbial Ecol 31:77–83

    Article  Google Scholar 

  • Tulasne LR, Tulasne C (1865) Selecta fungorum carpologia. Jussu, Paris

    Google Scholar 

  • Vahabi K, Dorcheh SK (2014) Biosynthesis of silver nano-particles by Trichoderma and its medical applications. In: biotechnology and biology of Trichoderma. Elsevier: 393-404

    Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Wiater A, Pleszczynska M, Szczodrak J, Janusz G (2012) Comparative studies on the induction of Trichoderma harzianum mutanase by α-(1→3)-glucan-rich fruiting bodies and mycelia of Laetiporus sulphureus. Int J Mol Sci 13(8):9584–9598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiater A, Szczodrak J, Pleszczynska M (2005) Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 56(1–2):137–150

    Article  CAS  PubMed  Google Scholar 

  • Xiezhi Y, Jieming C, Ming HM (2005) Earthworm-mycorrhiza interaction on cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Article  CAS  Google Scholar 

  • Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of cu pollution: an in vitro study. Toxicol Environ Chem 91:1305–1314

    Article  CAS  Google Scholar 

  • Zeng X, Su S, Jiang X, Li L, Bai L, Zhang Y (2010) Capability of pentavalent arsenic bioaccumulation and biovolatilization of three fungal strains under laboratory conditions. Clean: Soil, Air, Water 38:238–241

    CAS  Google Scholar 

Download references

Acknowledgments

AV is grateful to SERB-NPDF (PDF/2017/000689) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, R.M., Vaishnav, A., Singh, H.B. (2020). Trichoderma spp.: Expanding Potential beyond Agriculture. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_16

Download citation

Publish with us

Policies and ethics