Skip to main content

Advertisement

Log in

Mycogenic metal nanoparticles: progress and applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Nanotechnology is relevant to diverse fields of science and technology. Due to the many advantages over non-biological systems, several research groups have exploited the use of biological systems for the synthesis of nanoparticles. Among the different microbes used for the synthesis of nanoparticles, fungi are efficient candidates for fabrication of metal nanoparticles both intra- and extracellulary. The nanoparticles synthesized using fungi present good polydispersity, dimensions and stability. The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Coll Surf B Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, Mcmanus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:8–21

    Article  Google Scholar 

  • Bansal V, Syed A, Bhargava SK, Ahmad A, Sastry M (2007) Zirconia enrichment in zircon sand by selective fungus-mediated bioleaching of silica. Langmuir 23:4993–4998

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja S, Balaji SD, Legashetty A, Rasab AH, Venkatraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letts Appl Microbiol 173–179

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanotriangles using Aloe vera plant extract. Biotechnol Prog 22:577–579

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, D’Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Article  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioener 2:243–247

    Article  Google Scholar 

  • Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK (2009). Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of Fluconazole. J Nanomed (in press). doi:10.1016/j.nano.2009.06.005

  • Gao L, Zhang D, Chen M (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862

    Article  CAS  Google Scholar 

  • Gelperina S, Kisich K, Iseman SD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  PubMed  Google Scholar 

  • Glomm WR (2005) Functionalized gold nanoparticles for applications in bionanotechnology. J Dispers Sci Technol 26:389–414

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nano 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Coll Surf B Biointerfaces 71:226–229

    Article  CAS  Google Scholar 

  • Karbasian M, Atyabi SM, Siadat SD, Momem SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum (PTCC 5115) employing response surface methodology. Am J Agric Bio Sci 3:433–437

    Article  Google Scholar 

  • Keleher J, Bashant J, Heldt N, Johnson L, Li YZ (2002) Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J Microbiol Biotechnol 18:133–139

    Article  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkari SK, Paknikar KM (2002a) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Kulkarni SK, Paknikar KM, Vogel W, Urban J (2002b) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Park YK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 2959–2961

  • Mandal D, Bolander ME, Mukherjee P, Mukhopadhyay D, Sarkar G (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mohammadian A, Shojaosadati SA, Habibi-Rezaee M (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Scientia Iranica 14:323–326

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110

    Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystals assemblies. Ann Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Nam J, Thaxton CS, Mirkin CA (2003) Nanoparticle based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Khuller GK (2007) Nanoparticle based oral drug delivery system for an injectable antibiotic-streptomycin. Chemotherapy 53:437–441

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav P, Bridge P, Gade A (2009a) Myconanotechnology: a new and emerging science. In: Rai, Bridge (eds) Applied mycology. CABI publication, UK, pp 258–267

    Chapter  Google Scholar 

  • Rai M, Yadav A, Gade A (2009b) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83

    Article  CAS  Google Scholar 

  • Ramaratnam K, Iyer SK, Kinnan MK, Chumanov G, Brown PJ, Luzinov I (2008) Ultrahydrophobic textiles using nanoparticles: lotus approach. J Eng Fibers Fabrics 3:1–14

    CAS  Google Scholar 

  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (1999). Precision agriculture: changing the face of farming. [www.ghcc.msfc.nasa.gove/precisionag/]

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Shahi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev adv Mater Sci 5:501–509

    Google Scholar 

  • Shivshankar S, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  Google Scholar 

  • Shivshankar S, Ahmed A, Akkamwar B, Sastry M, Rai A, Singh A (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Article  Google Scholar 

  • Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J Pharm Tech Res 1:1523–1529

    CAS  Google Scholar 

  • Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 74:1624–1628

    Article  CAS  PubMed  Google Scholar 

  • Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) In-vitro evaluation of anti-bacterial activity of silver nanoparticles synthesized by using Phytophthora infestans. Int J Chem Tech Res 1:714–716

    CAS  Google Scholar 

  • Vigeshwaran N, Ashtaputre M, Nachane RP, Paralikar KM, Balasubramanya H (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gade, A., Ingle, A., Whiteley, C. et al. Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32, 593–600 (2010). https://doi.org/10.1007/s10529-009-0197-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0197-9

Keywords

Navigation