Skip to main content
Log in

Extracellular laccases in ascomycetesTrichoderma atroviride andTrichoderma harzianum

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Laccase activity inTrichoderma harzianum and in our own isolateTrichoderma atroviride was correlated with the production of the green pigment in conidial spores. The laccases of the two fungal species exhibit comparable kinetic parameters, pH optima and thermal sensitivity but differed in physiological properties, such as their catalytic activity during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agematu H., Shibamoto N., Hishida H., Okamoto R., Shin T., Murao S.: Oxidative decarboxylation of 4-hydroxymandelic acid and 2-(4-hydroxyphenyl)glycine by laccase fromTrachyderma tsunodae andMyrothecium verucaria.Biosci. Biotechnol. Biochem. 57, 1877–1881 (1993).

    Article  CAS  Google Scholar 

  • Assavanig A.B., Amornkitticharoen B., Ekpauisal N., Meevootisom V., Flegel T.W.: Isolation, characterization and function of laccase fromTrichoderma.Appl. Microbiol. Biotechnol. 38, 198–202 (1992).

    Article  CAS  Google Scholar 

  • Bourbonnais R., Paice M.G., Freiermuth B., Bodie E., Borneman S.: Reactivity of various mediators and laccases with kraft pulp and lignin model compounds.Appl. Environ. Microbiol. 63, 4627–4632 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butler M.J., Day A.W.: Fungal melanins: a review.Can. J. Microbiol. 44, 1115–1136 (1998).

    Article  CAS  Google Scholar 

  • Call H.P., Mücke I.: History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (Lignozym®-process).J. Biotechnol. 53, 163–202 (1997).

    Article  CAS  Google Scholar 

  • Chefetz B., Chen Y., Hadar Y.: Purification and characterization of laccase fromChaetomium thermophilium and its role in humification.Appl. Environm. Microbiol. 64, 3175–3179 (1998).

    CAS  Google Scholar 

  • Clutterbuck A.J.: Absence of laccase from yellow-spored mutants ofAspergillus nidulans.J. Gen. Microbiol. 70, 423–435 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Coll P.M., Fernandez-Abalos J.M., Villanueva J.R., Santamaria R., Perez P.: Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971).Appl. Environm. Microbiol. 59, 2607–2613 (1993).

    CAS  Google Scholar 

  • Das N., Chakraborty T.K., Mukherjee M.: Purification and characterization of laccase-1 fromPleurotus florida.Folia Microbiol. 45, 447–451 (2000).

    Article  CAS  Google Scholar 

  • Grosse S.:Untersuchungen zum Chemismus der Biokonversion von Braunkohle durch kohledegradierende Deuteromyceten.PhD Thesis. Technischen Universität Bergakademie. Freiberg (Germany) 2000.

    Google Scholar 

  • Harashima T., Inoue H.: Pleiotropic deficiencies of the laccase-derepressed mutantlah-1 are caused by constitutively increased expression of the cross-pathway control genecpc-1 inNeurospora crassa.Mol. Gen. Genet. 258, 619–627 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Harkin J.M., Obst R.J.: Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi.Experimentia 29, 381–387 (1973).

    Article  CAS  Google Scholar 

  • Hölker U., Fakoussa R.M., Höfer M.: Growth substrates control the ability ofFusarium oxysporum to solubilize low-rank coal.Appl. Microbiol. Biotechnol. 44, 351–355 (1995).

    Article  Google Scholar 

  • Hölker U., Ludwig S., Scheel T., Höfer M.: Mechanisms of coal solubilization by the deuteromycetesTrichoderma atroviride andFusarium oxysporum.Appl. Microbiol. Biotechnol. 52, 57–59 (1999).

    Article  PubMed  Google Scholar 

  • Hölker U., Mönkemann H., Höfer M.: A system to analyze the complex physiological states of coal solubilizing fungi.Fuel Proc. Technol. 52, 65–71 (1997).

    Article  Google Scholar 

  • Hölker U., Schmiers H., Winkelhöfer M., Polsakiewicz M., Ludwig M., Dohse J., Höfer M.: Solubilization of low-rank coal byTrichoderma atroviride: evidence for the involvement of hydrolytic and oxidative enzymes by using14C-labeled lignite.J. Industr. Microbiol. 28, 207–212 (2002).

    Article  Google Scholar 

  • Hölker U.:Mechanismen der Verflüssigung von Braunkohlen durch Pilze—ein Vergleich der Deuteromyceten Fusarium oxysporumund Trichoderma atroviride.PhD Thesis, University of Bonn (Germany) 1998.

    Google Scholar 

  • Kahraman S., Yeşilada O.: Industrial and agricultural wastes as substrates for laccase production by white-rot fungi.Folia Microbiol. 46, 133–136 (2001).

    Article  CAS  Google Scholar 

  • Klein J., Fakoussa R.M., Hölker U., Hofrichter M., Schmiers H., Sinder C., Steinbüchel A.: Biotechnology of coal, pp. 153–189 in H.-J. Rehm, G. Reed (Eds):Biotechnology, Vol. 10, Special Processes, Wiley-VCH, Weinheim (Germany) 2001.

    Google Scholar 

  • Ko E.M., Leem Y.E., Choi H.T.: Purification and characterization of laccase isoenzymes from the white-rot basidiomyceteGanoderma lucidum.Appl. Microbiol. Biotechnol. 57, 98–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Law D.J., Timberlake W.E.: Developmental regulation of laccase levels inAspergillus nidulans.J. Bacteriol. 144, 509–517 (1980).

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonowicz A., Cho N.-M., Luterek J., Wilkolazka A., Wojtas-Wasilewska M., Matuszewska A., Hofrichter M., Wesenberg D., Rogalski J.: Fungal laccase: properties and activity on lignin.J. Basic Microbiol. 41, 185–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Marbach I., Harel E., Mayer A.M.: Inducer and culture medium dependent properties of extracellular laccase fromBotrytis cinerea.Phytochemistry 22, 1535–1538 (1983).

    Article  CAS  Google Scholar 

  • Minuth W., Klischies M., Esser K.: The phenol oxidases of the ascomycetePodospora anserina. Structural differences between laccases of high and low molecular weight.Eur. J. Biochem. 90, 73–82 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Potthast A., Rosenau T., Chen C.-L., Gratzl J.S.: Selective enzymatic oxidation of aromatic methyl groups to aldehydes.J. Org. Chem. 60, 4320–4321 (1995).

    Article  CAS  Google Scholar 

  • Scherer M., Fischer R.: Purification and characterization of laccase II inAspergillus nidulans.Arch. Microbiol. 170, 78–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Thurston C.F.: The structure and function of fungal laccases.Microbiology 140, 19–26 (1994).

    Article  CAS  Google Scholar 

  • Ünyayar S., Ünal E., Ünyayar A.: Relationship between production of 3-indoleacetic acid and peroxidase laccase activities depending on the culture periods inFunalia trogii (Trametes trogii).Folia Microbiol. 46, 123–126 (2001).

    Article  Google Scholar 

  • Wahleithner, J.A., Xu F., Brown K.M., Brown S.H., Golightly E.J., Halkier T., Kauppinen S., Pederson A., Schnéider P.: The identification and characterization of four laccases from the plant pathogenic fungusRhizoctonia solani.Curr. Genet. 29, 395–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Zilly A., Souza C.G.M., Barbosa-Tessmann L.P., Peralta R.M.: Decolorization of industrial dyes by a Brazilian strain ofPleurotus pulmonarius producing laccase as the sole phenol-oxidizing enzyme.Folia Microbiol. 47, 273–278 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Hölker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölker, U., Dohse, J. & Höfer, M. Extracellular laccases in ascomycetesTrichoderma atroviride andTrichoderma harzianum . Folia Microbiol 47, 423–427 (2002). https://doi.org/10.1007/BF02818702

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818702

Keywords

Navigation