Skip to main content

Regulation of Genetically Engineered Animals

  • Chapter
  • First Online:
Regulation of Agricultural Biotechnology: The United States and Canada
  • 1196 Accesses

Abstract

The advent of genetic engineering (GE) techniques to produce transgenic animals in the early 1980s held the promise of being able to make precise changes to the genome of an animal to improve production traits and health in a faster and more specific fashion than possible with traditional breeding and selection. However, almost 30 years later, there are still no GE animal derived food products approved for use world-wide. The first, and to date only, product from a GE animal to be approved for use was human antithrobmin (A-Tryn®) produced in the milk of transgenic dairy goats as a human pharmaceutical. This is in stark contrast to the applications of GE plants, which are numerous and were approved very early in their development compared to GE animals. Why is this so? This chapter will give some perspective on the regulatory process for GE animals with respect to research and development of biotechnology-derived products and address issues that have been holding back the implementation of GE livestock. Topics will include methods for producing GE livestock, agricultural and medical applications of GE animals, regulatory guidelines in the US and factors influencing the development and implementation of GE animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, WĂĽnsch A, Wolf E (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88:653–664

    Article  PubMed  Google Scholar 

  • Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine α-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078

    PubMed  CAS  Google Scholar 

  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of β-casein and Îş-casein. Nat Biotechnol 21:157–162

    Article  PubMed  CAS  Google Scholar 

  • Brundige DR, Maga EA, Klasing KC, Murray JD (2008) Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. J Nutr 138:921–926

    PubMed  CAS  Google Scholar 

  • Brundige DR, Maga EA, Klasing KC, Murray JD (2010) Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs. Transgenic Res 19:563–574

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • CAC/GL 44–2003. Principles for the risk analysis of food derived from modern biotechnology. http://www.codexalimentarius.net/web/more_info.jsp?id_sta=10007. Accessed 27 Dec 2011

  • CAC/GL 68–2008. Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA animals. http://www.codexalimentarius.net/web/more_info.jsp?id_sta=11023. Accessed 27 Dec 2011

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–68

    Article  PubMed  CAS  Google Scholar 

  • Carlson DF, Geurts AM, Garbe JR, Park CW, Rangel-Filho A, O’Grady SM, Jacob HJ, Steer CJ, Largaespada DA, Fahrenkrug SC (2010) Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 20:29–45. doi:10.1007/s11248-010-9386-5

    Article  PubMed  Google Scholar 

  • Clark KJ, Carlson DF, Fahrenkrug SC (2007) Pigs taking wing with transposons and recombinases. Genome Biol 8(Suppl 1):S13.1–S13.16

    Article  Google Scholar 

  • Draft Guidance for Industry #187: Regulation of genetically engineered animals containing heritable rDNA constructs. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM113903.pdf. Accessed 27 Dec 2011

  • Du SJ, Gong Z, Fletcher G, Shears M, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology 10:176–181

    Article  PubMed  CAS  Google Scholar 

  • Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germline transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499

    Article  PubMed  CAS  Google Scholar 

  • Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology 9:835–838

    Article  PubMed  CAS  Google Scholar 

  • Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, McPherson JM, Cole ES (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91:4561–4571

    PubMed  CAS  Google Scholar 

  • Joint FAO/WHO Food Standards Programme (2008) Codex Alimentarius Commission: Report of the Thirty-First Session, Ref. No. ALINORM 08/31/REP 2008, FAO, Rome

    Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  PubMed  CAS  Google Scholar 

  • Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 21:1244–1246

    Article  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  PubMed  CAS  Google Scholar 

  • Hao YH, Yong HY, Murphy CN, Wax D, Samuel M, Rieke A, Lai L, Liu Z, Durtschi DC, Welbern VR, Price EM, McAllister RM, Turk JR, Laughlin MH, Prather RS, Rucker EB (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15:739–750

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, CĂ´tĂ© M, Herskovits P, Touati M, Turcotte C, Valeanu L, LemĂ©e N, Wilgus H, BĂ©gin I, Bhatia B, Rao K, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN, Langermann S (2007) Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA 104:13603–13608

    Article  PubMed  CAS  Google Scholar 

  • Hunter CV, Tiley LS, Sang HM (2005) Developments in transgenic technology: applications for medicine. Trends Mol Med 11:293–298

    Article  PubMed  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Berg JM, Murray JD, Maga EA (2010) Evaluating the fitness of human lysozyme transgenic dairy goats: growth and reproductive traits. Trans Res 19:977–986

    Article  CAS  Google Scholar 

  • Jaenisch R (1988) Transgenic animals. Science 240:1468–1474

    Article  PubMed  CAS  Google Scholar 

  • Keefer CL (2008) Lessons learned from nuclear transfer (cloning). Theriogenology 69:48–54

    Article  PubMed  CAS  Google Scholar 

  • Kragh PM, Nielsen AL, Li J, Du Y, Lin L, Schmidt M, Bogh IB, Holm IE, Jakobsen JE, Johansen MG, Purup S, Bolund L, Vajta G, Jørgensen AL (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18:545–558

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326:295–298

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl JM (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–181

    Article  PubMed  CAS  Google Scholar 

  • Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, Collette NMB, Moyer AL, Conrad-Brink JS, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2003) Increased efficiency of transgenic livestock production. Transgenic Res 12:485–496

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2006a) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89:518–524

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006b) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3:384–392

    Article  PubMed  CAS  Google Scholar 

  • Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM (2005) Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 14:761–773

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Maga EA (2010) Is there a risk from not using GE animals? Transgenic Res 19:357–361

    Article  PubMed  CAS  Google Scholar 

  • Nancarrow CD, Marshall JTA, Clarkson JL, Murray JD, Millard RM, Shanahan CM, Wynn PC, Ward KA (1991) Expression and physiology of performance regulating genes in transgenic sheep. J Reprod Fertil Suppl 43:277–291

    PubMed  CAS  Google Scholar 

  • Noble MS, Rodriguez-Zas S, Cook JB, Bleck GT, Hurley WL, Wheeler MB (2002) Lactational performance of first parity transgenic gilts expressing bovine α-lactalbumin in their milk. J Anim Sci 80:1090–1096

    PubMed  CAS  Google Scholar 

  • NRC (2002) Animal biotechnology: science based concerns. National Academies Press, Washington, DC

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    Article  PubMed  CAS  Google Scholar 

  • Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR, Blanton MR, Rojas G, Hao Y, Flowers WL, Banin E, Cideciyan AV, Jacobson SG, Wong F (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970

    Article  PubMed  CAS  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  PubMed  CAS  Google Scholar 

  • Pursel VG, Bolt DJ, Miller KF, Pinkert CA, Hammer RE, Palmiter RD, Brinster RL (1990) Expression and performance in transgenic pigs. J Reprod Fertil Suppl 40:235–245

    PubMed  CAS  Google Scholar 

  • Pursel VG, Mitchell AD, Bee G, Elsasser TH, McMurtry JP, Wall RJ, Coleman ME, Schwartz RJ (2004) Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Anim Biotechnol 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Rapp JC, Harvey AJ, Speksnijder GL, Hu W, Ivarie R (2003) Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res 12:569–575

    Article  PubMed  CAS  Google Scholar 

  • Reh WA, Maga EA, Collette NMB, Moyer A, Conrad-Brink JS, Taylor SJ, DePeters EJ, Oppenheim S, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2004) Using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J Dairy Sci 87:3510–3514

    Article  PubMed  CAS  Google Scholar 

  • Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Göke B, Pfeifer A, Wanke R, Wolf E (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired GIP function. Diabetes 59:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138

    Article  PubMed  CAS  Google Scholar 

  • Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    Article  PubMed  CAS  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  PubMed  CAS  Google Scholar 

  • Tai HC, Ezzelarab M, Hara H, Ayares D, Cooper DK (2007) Progress in xenotransplantation following the introduction of gene-knockout technology. Transpl Int 20:107–117

    Article  PubMed  CAS  Google Scholar 

  • Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE, Imai H (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–582

    Article  PubMed  CAS  Google Scholar 

  • Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

    Article  PubMed  CAS  Google Scholar 

  • van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    Article  PubMed  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  PubMed  CAS  Google Scholar 

  • Wells DN (2005) Animal cloning: problems and prospects. Rev Sci Tech 24:251–264

    PubMed  CAS  Google Scholar 

  • Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA (2004) Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett 571:233–236

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw CBA, Lilico SG, King T (2008) Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Anim 43(Suppl 2):355–358

    Article  PubMed  Google Scholar 

  • Williams D (2003) Sows’ ears, silk purses and goats’ milk: new production methods and medical applications for silk. Med Dev Technol 14:9–11

    Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Maga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maga, E.A., Murray, J.D. (2012). Regulation of Genetically Engineered Animals. In: Wozniak, C., McHughen, A. (eds) Regulation of Agricultural Biotechnology: The United States and Canada. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2156-2_14

Download citation

Publish with us

Policies and ethics