Skip to main content
Log in

Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets

  • Original Research Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Vascular function, vascular structure, and homeostasis are thought to be regulated in part by nitric oxide (NO) released by endothelial cell nitric oxide synthase (eNOS), and NO released by eNOS plays an important role in modulating metabolism of skeletal and cardiac muscle in health and disease. The pig is an optimal model for human diseases because of the large number of important similarities between the genomic, metabolic and cardiovascular systems of pigs and humans. To gain a better understanding of cardiovascular regulation by eNOS we produced pigs carrying an endogenous eNOS gene driven by a Tie-2 promoter and tagged with a V5 His tag. Nuclear transfer was conducted to create these animals and the effects of two different oocyte activation treatments and two different culture systems were examined. Donor cells were electrically fused to the recipient oocytes. Electrical fusion/activation (1 mM calcium in mannitol: Treatment 1) and electrical fusion (0.1 mM calcium in mannitol)/chemical activation (200 µM Thimerosal for 10 min followed by 8 mM DTT for 30 min: Treatment 2) were used. Embryos were surgically transferred to the oviducts of gilts that exhibited estrus on the day of fusion or the day of transfer. Two cloned transgenic piglets were born from Treatment 1 and low oxygen, and another two from Treatment 2 and normal oxygen. PCR, RT-PCR, Western blotting and immunohistochemistry confirmed that the pigs were transgenic, made message, made the fusion protein and that the fusion protein localized to the endothelial cells of placental vasculature from the conceptuses as did the endogenous eNOS. Thus both activation conditions and culture systems are compatible with development to term. These pigs will serve as the founders for a colony of miniature pigs that will help to elucidate the function of eNOS in regulating muscle metabolism and the cardiorespiratory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-aleem S, St Louis JD, Hughes GC, Lowe JE (1999) Metabolic changes in the normal and hypoxic neonatal myocardium. Ann NY Acad Sci 874:254–261

    Article  PubMed  CAS  Google Scholar 

  • Alarcon CM, Umthun AR, Register JC (2001) Use of epitope tags for routine analysis of transgene expression. Trans Res 10:183–192

    Article  CAS  Google Scholar 

  • Amano K, Matsubara H, Iba O, Okigaki M, Fujiyama S, Imada T, Kojima H, Nozawa Y, Kawashima S, Yokoyama M, Iwasaka T (2003) Enhancement of ischemia-induced angiogenesis by enos overexpression. Hypertension 41:156–162

    Article  PubMed  CAS  Google Scholar 

  • Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461

    Article  PubMed  CAS  Google Scholar 

  • Carroll JA, Carter DB, Korte SW, Prather RS (2005) Evaluation of the acute phase response in cloned pigs following a lipopolysaccharide challenge. Domest Anim Endocrinol 29:564–572

    Article  PubMed  CAS  Google Scholar 

  • Chu PH, Lu TJ, Chen J (2003) Gene-engineered models for genetic manipulation and functional analysis of the cardiovascular system in mice. Chang Gung Med J 26:868–878

    PubMed  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Deleon FAP, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Clark J, Whitelaw B (2003) A future for transgenic livestock. Nat Rev Genet 4:825–833

    Article  PubMed  CAS  Google Scholar 

  • Constien R, Forde A, Liliensiek B, Grone HJ, Nawroth P, Hammerling G, Arnold B (2001) Characterization of a novel egfp reporter mouse to monitor cre recombination as demonstrated by a tie2 cre mouse line. Genesis 30:36–44

    Article  PubMed  CAS  Google Scholar 

  • Fan JL, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Therapeut 99:261–282

    Article  CAS  Google Scholar 

  • Godecke A, Decking UKM, Zing ZP, Hirchenhain J, Bidmon HJ, Godecke S, Schrader J (1998) Coronary hemodynamics in endothelial no synthase knockout mice. Circ Res 82:186–194

    PubMed  CAS  Google Scholar 

  • Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76

    Article  PubMed  CAS  Google Scholar 

  • Herrera VLM, Ruiz-Opazo N (2005) Genetic studies in rat models: insights into cardiovascular disease. Curr Opin Lipidol 16:179–191

    Article  PubMed  CAS  Google Scholar 

  • Huang PL, Huang ZH, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  PubMed  CAS  Google Scholar 

  • Hughes GC, Post MJ, Simons M, Annex BH (2003) Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol 94:1689–1701

    PubMed  Google Scholar 

  • Hughes HC (1986) Swine in cardiovascular research. Lab Anim Sci 36:348–350

    PubMed  CAS  Google Scholar 

  • Im G-S, Lai L, Liu Z, Hao Y, Prather RS (2004) In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology 61:1125–1135

    Article  PubMed  Google Scholar 

  • James JF, Hewett TE, Robbins J (1998) Cardiac physiology in transgenic mice. Circ Res 82:407–415

    PubMed  CAS  Google Scholar 

  • Jarvik JW, Telmer CA (1998) Epitope tagging. Ann Rev Genet 32:601–618

    Article  PubMed  CAS  Google Scholar 

  • Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55:503–517

    PubMed  CAS  Google Scholar 

  • Jones SP, Greer JJM, Kakkar AK, Ware PD, Turnage RH, Hicks M, van Haperen R, de Crom R, Kawashima S, Yokoyama M, Lefer DJ (2004) Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol-Heart Circ Physiol 286:H276-H282

    Article  PubMed  CAS  Google Scholar 

  • Jones SP, Greer JJM, van Haperen R, Duncker DJ, Crom RC, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proce Nat Acad Sci USA 100:4891–4896

    Article  CAS  Google Scholar 

  • Kawashima S, Yamashita T, Ozaki M, Ohashi Y, Azumi H, Inoue N, Hirata K, Hayashi Y, Itoh H, Yokoyama M (2001) Endothelial no synthase overexpression inhibits lesion formation in mouse model of vascular remodeling. Arterioscl Throm Vas Biol 21:201–207

    CAS  Google Scholar 

  • Keefer CL (2004) Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82–83:5–12

    Article  PubMed  CAS  Google Scholar 

  • Krege JH, Hodgin JB, Hagaman JR, Smithies O (1995) A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension 25:1111–1115

    PubMed  CAS  Google Scholar 

  • Lai LX, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  PubMed  CAS  Google Scholar 

  • Lai TJ, Fallon JT, Liu J, Mangion J, Gillam L, Waters D, Chen CG (2000) Reversibility and pathohistological basis of left ventricular remodeling hibernating myocardium. Cardiovasc Pathol 9:323–335

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Turk JR, Schrage WG, Woodman CR, Price EM (2003) Influence of coronary artery diameter on enos protein content. Am J Physiol-Heart Circ Physiol 284:H1307–H1312

    PubMed  CAS  Google Scholar 

  • Lee PC, Salyapongse AN, Bragdon GA, Shears LL, Watkins SC, Edington HDJ, Billiar TR (1999) Impaired wound healing and angiogenesis in enos-deficient mice. Am J Physiol-Heart Circ Physiol 277:H1600–H1608

    CAS  Google Scholar 

  • Lee TC, Zhao YD, Courtman DW, Stewart DJ (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101:2345–2348

    PubMed  CAS  Google Scholar 

  • Machaty Z, Wang WH, Day BN, Prather RS (1997) Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol Reprod 57:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Maga EA (2005) Genetically engineered livestock: Closer than we think? Trend Biotechnol 23:533–535

    Article  CAS  Google Scholar 

  • Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R (1999) A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Investigat 104:1683–1692

    Article  CAS  Google Scholar 

  • Motoike T, Loughna S, Perens E, Roman BL, Liao W, Chau TC, Richardson CD, Kawate T, Kuno J, Weinstein BM, Stainier DYR, Sato TN (2000) Universal gfp reporter for the study of vascular development. Genesis 28:75–81

    Article  PubMed  CAS  Google Scholar 

  • Mungrue IN, Bredt DS, Stewart DJ, Husain M (2003) From molecules to mammals: What’s nos got to do with it? Acta Physiologica Scandinavica 179:123–135

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Utamura Y, Kahn CR, Accili D (2004) Mouse models of insulin resistance. Physiolog Rev 84:623–647

    Article  CAS  Google Scholar 

  • Niemann H, Kues WA (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79:291–317

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T,␣Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J␣Clin Investigat 102:2061–2071

    CAS  Google Scholar 

  • Ozaki M, Kawashima S, Hirase T, Yamashita T, Namiki M, Inoue N, Hirata K, Yokoyama M (2002a) Overexpression of endothelial nitric oxide synthase in endothelial cells is protective against ischemia-reperfusion injury in mouse skeletal muscle. Am J Pathol 160:1335–1344

    CAS  Google Scholar 

  • Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, Hirata K, Yasui H, Sakurai H, Yoshida Y, Masada M, Yokoyama M (2002b) Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoe-deficient mice. J␣Clin Investigat 110:331–340

    Article  CAS  Google Scholar 

  • Panepinto LM, Phillips RW (1986) The yucatan miniature pig: Characterization and utilization in biomedical research. Lab Anim Sci 36:344–347

    PubMed  CAS  Google Scholar 

  • Park KW, Cheong HT, Lai LX, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2001) Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 12:173–181

    Article  PubMed  CAS  Google Scholar 

  • Prather RS (2006) Nuclear remodeling and nuclear reprogramming for making transgenic pigs by nuclear transfer. In: Sutovsky P (ed) Somatic cell nuclear transfer. Landes Bioscience, Georgetown, TX. pp 1–13

  • Prather RS, Barnes FL, Sims ML, Robl JM, Eyestone WH, First NL (1987) Nuclear transfer in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37:859–866

    Article  PubMed  CAS  Google Scholar 

  • Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL (2003) Transgenic swine for biomedicine and agriculture. Theriogenology 59:115–123

    Article  PubMed  CAS  Google Scholar 

  • Prather RS, Sims MM, First NL (1989) Nuclear transplantation in early pig embryos. Biol Reprod 41:414–418

    Article  PubMed  CAS  Google Scholar 

  • Previtali SC, Quattrini A, Fasolini M, Panzeri MC, Villa A, Filbin MT, Li WH, Chiu SY, Messing A, Wrabetz L, Feltri ML (2000) Epitope-tagged p-0 glycoprotein causes charcot-marie-tooth-like neuropathy in transgenic mice. J Cell Biol 151:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiolog Rev 80:135–172

    CAS  Google Scholar 

  • Sato TN, Qin Y, Kozak CA, Audus KL (1993) Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proce Nat Acad Sci USA 90:9355–9358

    Article  CAS  Google Scholar 

  • Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proce Nat Acad Sci USA 94:3058–3063

    Article  CAS  Google Scholar 

  • Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN (1995) Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 121:1089–1098

    PubMed  CAS  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KHS (1997) Human factor ix transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Schnurch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968

    PubMed  CAS  Google Scholar 

  • Shankar RR, Wu YG, Shen HQ, Zhu JS, Baron AD (2000) Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49:684–687

    PubMed  CAS  Google Scholar 

  • Shen SB, Spratt C, Sheward WJ, Kallo I, West K, Morrison CF, Coen CW, Marston HM, Harmar AJ (2000) Overexpression of the human vpac(2) receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proceedings of the National Acad Sci USA 97:11575–11580

    Article  CAS  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proce Nat Acad Sci USA 93:13176–13181

    Article  CAS  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the tie2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Swindle MM, Horneffer PJ, Gardner TJ, Gott VL, Hall TS, Stuart RS, Baumgartner WA, Borkon AM, Galloway E, Reittz BA (1986) Anatomic and anesthetic considerations in experimental and cardiopulmonary surgery in swine. Lab Anim Sci 36:357–361

    PubMed  CAS  Google Scholar 

  • Takahashi N, Smithies O (2004) Human genetics, animal models and computer simulations for studying hypertension. Trend Genet 20:136–145

    Article  CAS  Google Scholar 

  • Takeishi Y, Walsh RA (2001) Cardiac hypertrophy and failure: Lessons learned from genetically engineered mice. Acta Physiologica Scandinavica 173:103–111

    Article  PubMed  CAS  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    PubMed  CAS  Google Scholar 

  • Turk JR, Laughlin MH (2004) Physical activity and atherosclerosis: which animal model?. Can J Appl Physiol 29:657–683

    PubMed  Google Scholar 

  • van Haperen R, de Waard M, van Deel E, Mees B, Kutryk M, van Aken T, Hamming J, Grosveld F, Dunker DJ, de Crom R (2002) Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. J Biol Chem 277:48803–48807

    Article  PubMed  Google Scholar 

  • Weaver ME, Pantley GA, Bristow JD, Ladley HD (1986) A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res 20:907–917

    PubMed  CAS  Google Scholar 

  • Wheeler MB (2003) Production of transgenic livestock: Promise fulfilled. J Anim Sci 81:32–37

    PubMed  CAS  Google Scholar 

  • White FC, Roth DM, Bloor CM (1986) The pig as a model for myocardial ischemia and exercise. Lab Anim Sci 36:351–356

    PubMed  CAS  Google Scholar 

  • Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 31:956–962

    Google Scholar 

  • Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 10:77–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funded by a grant from the NIH RR18276 and Food for the 21st Century. The authors would like to acknowledge the help provided by Lonnie Dowell in managing the Swine Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Prather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y.H., Yong, H.Y., Murphy, C.N. et al. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets . Transgenic Res 15, 739–750 (2006). https://doi.org/10.1007/s11248-006-9020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9020-8

Keywords

Navigation