Skip to main content
Log in

Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Heightened interest in relevant models for human disease increases the need for improved methods for germline transgenesis. We describe a significant improvement in the creation of transgenic laboratory mice and rats by chemical modification of Sleeping Beauty transposons. Germline transgenesis in mice and rats was significantly enhanced by in vitro cytosine-phosphodiester-guanine methylation of transposons prior to injection. Heritability of transgene alleles was also greater from founder mice generated with methylated versus non-methylated transposon. The artificial methylation was reprogrammed in the early embryo, leading to founders that express the transgenes. We also noted differences in transgene insertion number and structure (single-insert versus concatemer) based on the influence of methylation and plasmid conformation (linear versus supercoiled), with supercoiled substrate resulting in efficient transpositional transgenesis (TnT) with near elimination of concatemer insertion. Combined, these substrate modifications resulted in increases in both the frequency of transgenic founders and the number of transgenes per founder, significantly elevating the number of potential transgenic lines. Given its simplicity, versatility and high efficiency, TnT with enhanced Sleeping Beauty components represents a compelling non-viral approach to modifying the mammalian germline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SB:

Sleeping Beauty

TnT:

Transpositional transgenesis

CpG:

Cytosine-phosphodiester-guanine

References

  • Armstrong L, Lako M, Dean W, Stojkovic M (2006) Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 24(4):805–814

    Article  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    Article  CAS  PubMed  Google Scholar 

  • Betzl G, Brem G, Weidle UH (1996) Epigenetic modification of transgenes under the control of the mouse mammary tumor virus LTR: tissue-dependent influence on transcription of the transgenes. Biol Chem 377(11):711–719

    CAS  PubMed  Google Scholar 

  • Bishop JO (1997) Chromosomal insertion of foreign DNA. Transgenic animals: generation and use. L.-M. Houdebine. Harwood Academic Publishers, Amsterdam, pp 219–223

    Google Scholar 

  • Brem G, Muller M (1994) Large transgenic mammals. Animals with novel genes. N. Maclean. Cambridge University Press, Cambridge, pp 179–244

    Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82(13):4438–4442

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Hunter R, Strnatka D, McQueen CA, Erickson RP (2005) DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J Appl Genet 46(2):217–225

    PubMed  Google Scholar 

  • Chen CM, Choo KB, Cheng WT (1995) Frequent deletions and sequence aberrations at the transgene junctions of transgenic mice carrying the papillomavirus regulatory and the SV40 TAg gene sequences. Transgenic Res 4(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Chevalier-Mariette C, Henry I, Montfort L, Capgras S, Forlani S, Muschler J, Nicolas J-F (2003) CpG content affects gene silencing in mice: evidence from novel transgenes. Genome Biol 4(9):R53

    Article  PubMed  Google Scholar 

  • Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC (2007) Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol 7:42

    Article  PubMed  Google Scholar 

  • Clark KJ, Carlson DF, Leaver MJ, Foster LK, Fahrenkrug SC (2009) Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res 37(4):1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias L, Nishida Y, Mintz B (1986) Early postimplantation embryo lethality due to DNA rearrangements in a transgenic mouse strain. Proc Natl Acad Sci USA 83(16):6020–6024

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol 318(5):1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483

    Article  CAS  PubMed  Google Scholar 

  • Dorer DR, Henikoff S (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147(3):1181–1190

    CAS  PubMed  Google Scholar 

  • Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99(7):4495–4499

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385

    Article  CAS  PubMed  Google Scholar 

  • Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18(1):56–59

    Article  CAS  PubMed  Google Scholar 

  • Germain S, Fuchs S, Philippe J, Corvol P, Pinet F (2001) New elements in human renin promoter involved in cell-specific expression. Clin Exp Pharmacol Physiol 28(12):1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8(1):108–117

    Article  CAS  PubMed  Google Scholar 

  • Geurts AM, Collier LS, Geurts JL, Oseth LL, Bell ML, Mu D, Lucito R, Godbout SA, Green LE, Lowe SW, Hirsch BA, Leinwand LA, Largaespada DA (2006a) Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2(9):e156

    Article  PubMed  Google Scholar 

  • Geurts AM, Wilber A, Carlson CM, Lobitz PD, Clark KJ, Hackett PB, McIvor RS, Largaespada DA (2006b) Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnol 6:30

    Article  PubMed  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  • Gordon JW, Ruddle FH (1985) DNA-mediated genetic transformation of mouse embryos and bone marrow–a review. Gene 33(2):121–136

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541

    Article  CAS  PubMed  Google Scholar 

  • Hamada T, Sasaki H, Seki R, Sakaki Y (1993) Mechanism of chromosomal integration of transgenes in microinjected mouse eggs: sequence analysis of genome-transgene and transgene-transgene junctions at two loci. Gene 128(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • He J, Yang Q, Chang L-J (2005) Dynamic DNA methylation and histone modifications contribute to lentiviral transgene silencing in murine embryonic carcinoma cells. J Virol 79(21):13497–13508

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4(11):1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 71(2):405–409

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A (2006) Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 13(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Horie K, Yusa K, Yae K, Odajima J, Fischer SE, Keng VW, Hayakawa T, Mizuno S, Kondoh G, Ijiri T, Matsuda Y, Plasterk RH, Takeda J (2003) Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol Cell Biol 23(24):9189–9207

    Article  CAS  PubMed  Google Scholar 

  • Ikeda R, Kokubu C, Yusa K, Keng VW, Horie K, Takeda J (2007) Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol Cell Biol 27(5):1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Izsvak Z, Stuwe EE, Fiedler D, Katzer A, Jeggo PA, Ivics Z (2004) Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 13(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Jacob HJ, Kwitek AE (2002) Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet 3(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    Article  CAS  PubMed  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294(5542):564–567

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M, Martin GR (1997) Cre-mediated chromosome loss in mice. Nat Genet 17(2):223–225

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. PNAS 96(26):15251–15255

    Article  CAS  PubMed  Google Scholar 

  • Mark WH, Signorelli K, Blum M, Kwee L, Lacy E (1992) Genomic structure of the locus associated with an insertional mutation in line 4 transgenic mice. Genomics 13(1):159–166

    Article  CAS  PubMed  Google Scholar 

  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533

    Article  CAS  PubMed  Google Scholar 

  • Mátés L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Judis C, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Mathieu C, Pryputniewicz D, Fletcher B, VandenDriessche T, Ivics Z, Izsvák Z (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761

    Article  PubMed  Google Scholar 

  • Michalkiewicz M, Michalkiewicz T, Geurts AM, Roman RJ, Slocum GR, Singer O, Weihrauch D, Greene AS, Kaldunski ML, Verma IM, Jacob HJ, Cowley Jr AW (2007) Efficient transgenic rat production by a lentiviral vector. Am J Physiol Heart Circ Physiol 293(1):H881–H894

    Article  CAS  PubMed  Google Scholar 

  • Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31(23):6873–6881

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kuroiwa A, Yamada S, Isotani A, Yamashita A, Tairaka A, Hayashi T, Takagi T, Ikawa M, Matsuda Y, Okabe M (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80(6):564–574

    Article  CAS  PubMed  Google Scholar 

  • Noelle RJ, Ledbetter JA, Aruffo A (1992) CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today 13(11):431–433

    Article  CAS  PubMed  Google Scholar 

  • Overbeek PA, Lai SP, Van Quill KR, Westphal H (1986) Tissue-specific expression in transgenic mice of a fused gene containing RSV terminal sequences. Science 231(4745):1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Park CW, Kren BT, Largaespada DA, Steer CJ (2005) DNA methylation of Sleeping Beauty with transposition into the mouse genome. Genes Cells 10(8):763–776

    Article  CAS  PubMed  Google Scholar 

  • Park CW, Park J, Kren BT, Steer CJ (2006) Sleeping Beauty transposition in the mouse genome is associated with changes in DNA methylation at the site of insertion. Genomics 88(2):204–213

    Article  CAS  PubMed  Google Scholar 

  • Pravtcheva DD, Wise TL (1995) A postimplantation lethal mutation induced by transgene insertion on mouse chromosome 8. Genomics 30(3):529–544

    Article  CAS  PubMed  Google Scholar 

  • Rakyan VK, Hildmann T, Novik KL, Lewin J, Ouml RN, Tost J, Ouml RG, Cox AV, Andrews TD, Howe KL, Otto T, Olek A, Fischer J, Gut IG, Berlin K, Beck S (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biology 2(12):e405

    Article  PubMed  Google Scholar 

  • Rohan RM, King D, Frels WI (1990) Direct sequencing of PCR-amplified junction fragments from tandemly repeated transgenes. Nucleic Acids Res 18(20):6089–6095

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, Koetsier PA, Hertz J, Doerfler W (2000) Epigenetic and genotype-specific effects on the stability of de novo imposed methylation patterns in transgenic mice. J Biol Chem 275(48):37915–37921

    Article  CAS  PubMed  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11(3):353–361

    Article  CAS  PubMed  Google Scholar 

  • Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14(5):531–546

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Burdon TG (1997) The fate of microinjected genes in preimplantation embryos. Transgenic animals: generation and use. L.-M. Houdebine. Harwood Academic Publishers, Amsterdam, pp 215–217

    Google Scholar 

  • Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105(27):9290–9295

    Article  CAS  PubMed  Google Scholar 

  • Wilber A, Frandsen JL, Geurts JL, Largaespada DA, Hackett PB, McIvor RS (2006) RNA as a source of transposase for sleeping beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 13(3):625–630

    Article  CAS  PubMed  Google Scholar 

  • Wilkie TM, Palmiter RD (1987) Analysis of the integrant in MyK-103 transgenic mice in which males fail to transmit the integrant. Mol Cell Biol 7(5):1646–1655

    CAS  PubMed  Google Scholar 

  • Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000) Transgenic technology in farm animals–progress and perspectives. Exp Physiol 85(6):615–625

    Article  CAS  PubMed  Google Scholar 

  • Yusa K, Takeda J, Horie K (2004) Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol 24(9):4004–4018

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9(2):292–304

    Article  CAS  PubMed  Google Scholar 

  • Zwijsen A, van Rooijen MA, Goumans MJ, Dewulf N, Bosman EA, ten Dijke P, Mummery CL, Huylebroeck D (2000) Expression of the inhibitory Smad7 in early mouse development and upregulation during embryonic vasculogenesis. Dev Dyn 218(4):663–670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Randy Daughters of the University of Minnesota for providing the HSA-CCTG300 transgene, Sandra Wagner of the University of Minnesota Mouse Genetics lab for mouse PNI, Drs. Wanda Filipiak and Thom Saunders at the University of Michigan Transgenic Animal Model Core for training in rat PNI and Dr. Yang Da at the University of Minnesota for statistical support.

Funding

This work was in part supported by a U of MN Academic Health Center Faculty Development Grant and National Institutes of Health grant 5R56DK074010-02 to Drs. O’Grady, Steer and Fahrenkrug.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Fahrenkrug.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PPTX 5020 kb

DOC 36 kb

DOC 57 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, D.F., Geurts, A.M., Garbe, J.R. et al. Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 20, 29–45 (2011). https://doi.org/10.1007/s11248-010-9386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9386-5

Keywords

Navigation