Skip to main content

Molecular Tools for Enhancing Salinity Tolerance in Plants

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement

Abstract

Salinity is nowadays considered one of the main factors that limit crop productivity and a threat to world’s food production. Hence, to breed salt tolerant varieties of crops and horticultural species is necessary to increase or at least maintain food production in order to feed the growing world’s population. Plant tolerance to salinity is a complex phenomenon at both cellular and plant level. Since salt causes several types of stresses, plants face salinity using different strategies, whose relative importance depends on the species and the growing conditions. Here we present an overview of the salt tolerance mechanisms to counteract osmotic, ionic and oxidative stress, as well as an update of the knowledge on the processes involved in salt tolerance gained in part through the new genomic approaches. To breed new cultivars able to grow and maintain crop productivity on saline conditions requires variability for some of the traits related to salinity tolerance, the discovery of quantitative trait loci (QTL) regulating those traits, a deep understanding of QTL interaction with other QTL and with the environment, and the transfer of QTL from donors to elite lines using phenotypic and marker assisted selection. We have summarised part of the information related to these four issues and some guidance is given to maximize the efficiency of the selection processes. Genetic transformation has become a powerful tool in plant breeding programs since it allows the introduction of gene(s) controlling traits without affecting the rest of the characteristics of an elite genotype. In this chapter we have reviewed the available information on several topics such as: salt tolerance improvement aided by genetic transformation, functional analysis of genes related salt-tolerance, the complexity of the trait and its evaluation method, the number of genes to be introduced, and the sources of genetic variability. Finally, the use of genomic tools like transcriptomic analysis, post-transcriptional gene silencing, insertional mutagenesis and gene traps, to perform the genetic dissection of this complex trait is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal PK, Agarwal P, Reddy MK et al (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Aharon GS, Apse MP, Duan S et al (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil 253:245–256

    Article  CAS  Google Scholar 

  • Alarcon JJ, Sanchez-Blanco MJ, Bolarin MC et al (1993) Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery. Physiol Plant 89:441–447

    Article  CAS  Google Scholar 

  • Alia AJ, Xua JL, Ismail AM et al (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res 97:66–76

    Article  Google Scholar 

  • Anton T, Garcia-Abellan JO, Perez F et al (2009) Identification of genes related to salt and drought tolerance in T-DNA tagging lines of cultivated and wild tomato species. In: Plant abiotic stress tolerance. Proc of Internat Conferen, Vienna feb 2009:161

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA et al (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis thaliana. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Arrillaga I, Gil-Mascarell R, Gisbert C et al (1998) Expression of the yeast HAL2 gene in tomato increases the in vitro ssalt tolerance of transgenic progenies. Plant Sci 136:219–226

    Article  CAS  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M, Waheed A (1990) Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 128:167–176

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris RJC et al (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Asins MJ, Bretó MP, Cambra M et al (1993) Salt tolerante in Lycopersicon species. II. Genetics effects and a search for associated traits. Theor Appl Genet 86:769–774

    Google Scholar 

  • Balibrea ME, Cuartero J, Bolarin MC et al (2003) Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiol Plant 118:38–46

    Article  PubMed  CAS  Google Scholar 

  • Barage M (2002) Identificación de fuentes de tolerancia a la salinidad y al estrés hídrico en especies silvestres de la familia Cucurbitaceae. Ph.D. thesis. Universidad Politécnica de Valencia, Valencia, Spain

    Google Scholar 

  • Barage M, Pineda B, Atares A et al (2002) Identificación de fuentes de tolerancia a la salinidad en especies silvestres de la familia Cucurbitaceae sobre la base de parámetros de crecimiento vegetativo. Actas de Hrticultura 34:133–138

    Google Scholar 

  • Bartels D, Dunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basnayake J, Ludlow MM, Cooper M et al (1993) Genotypic variation among adjustment and desiccation tolerance in contrasting sorghum inbred lines. Field Crops Res 35:51–62

    Article  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Ben Amor N, Jimenez A, Megdiche W et al (2007) Kinetics of antioxidant response to salinity in the halophyte Cakile maritima. J Integr Plant Biol 49:1–11

    Google Scholar 

  • Benito B, Rodriguez-Navarro A (2003) Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J 36:382–389

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Blum A (1989) Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29:230–233

    Article  Google Scholar 

  • Blum A, Munns R, Passioura JB et al (1996) Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? Plant Physiol 110:1051

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P et al (2006) Unraveling abiotic stress tolerance mechanisms - getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Golldack D, Ishitani M et al (1996) Salt tolerance engineering requires multiple gene transfer. In: Collins GB, Shepherd RJ (eds) Engineering plants for commercial products and application. Ann New York Acad Sci 729:115–125

    Article  Google Scholar 

  • Bolaños J, Edmeades GO, Martinez L (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Res 31:269–286

    Google Scholar 

  • Bolarin MC, Fernández FG, Cuartero J et al (1991) Salinity tolerance in four wild tomato species using vegetative yield-salinity response curves. J Am Soc Hort Sci 116:286–290

    Google Scholar 

  • Borsani O, Cuartero J, Valpuesta V et al (2002) Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant J 32:905–914

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Bohner HJ, Hasegawa PM (2008) Genetic engineering for salinity stres tolerance. Adv Plant Biochem Mol Biol 1:347–384

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Mezghani I et al (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  PubMed  CAS  Google Scholar 

  • Cano EA, Perez-Alfocea F, Moreno V et al (1996) Responses to NaCl stress of cultivated and wild species and their hybrids in callus culture. Plant Cell Rep 15:791–794

    Article  CAS  Google Scholar 

  • Capell T, Escobar C, Lui H et al (1998) Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    Article  CAS  Google Scholar 

  • Caro M, Cruz V, Cuartero J et al (1991) Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant Soil 136:249–255

    Article  CAS  Google Scholar 

  • Chen H, An R, Tang JH et al (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK et al (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  PubMed  CAS  Google Scholar 

  • Cherian S, Reddy MP, Ferreira RB (2006) Transgenic plants with improved dehydration-stress tolerance: progress and future prospects. Biol Plant 50:481–495

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Colmenero-Flores JM, Martinez G, Gamba G et al (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292

    Article  PubMed  CAS  Google Scholar 

  • Cruz V (1990) Tolerancia a la salinidad y criterios de selección en Lycopersicon Mill. spp. Tesis doctoral. Universidad de Málaga, 484 p

    Google Scholar 

  • Cuartero J, Fernández-Muñoz R (1999) Tomato and salinity. Sci Hort 78:83–125

    Article  CAS  Google Scholar 

  • Cuartero J, Bolarin MC, Asíns MJ et al (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  PubMed  CAS  Google Scholar 

  • Cuartero J, Bolarin MC, Moreno V et al (2008) Tolerancia a la salinidad. In: Moreno MT, Cubero JI, Atienza S, et al (eds) El ambiente y los estreses abióticos en mejora vegetal. IFAPA-Junta de Andalucía:231–262

    Google Scholar 

  • Cuartero J, Romero-Aranda R, Yeo AR et al (2002) Variability for some physiological characters affecting salt tolerance in tomato. Acta Hort 573:435–441

    Google Scholar 

  • Dai X, Xu Y, Ma Q et al (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D et al (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  PubMed  CAS  Google Scholar 

  • De Costa W, Zorb C, Hartung W et al (2007) Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131:311–321

    PubMed  Google Scholar 

  • Emmanuel E, Levy AA (2002) Tomato mutants as genomic tools. Curr Opin Plant Biol 5:112–117

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F et al (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • FAO (2005) Global Network of Integrated Soil Management for Sustainability Use of Salt-Affected Soils. Rome FAO Land and Plant Nutrition Management Service http://www.fao.org/ag/agl/agll/spush

  • Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Genet Rev 2:437–445

    Article  CAS  Google Scholar 

  • Flowers TJ (1972a) Salt tolerance in Suaeda maritima L. Dum. The effect of sodium chloride on growth, respiration and soluble enzymes in a comparative study with Pisum sativum. J Exp Bot 23:310–321

    CAS  Google Scholar 

  • Flowers TJ (1972b) The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochem 11:1881–1886

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity tolerance in crop plants: Where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA et al (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA et al (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY (1997) Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed 116:363–367

    Article  CAS  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Frankel WN, Schork NJ (1996) Who’s afraid of epistasis? Nat Genet 14:371–373

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Gao Q, Duan XG et al (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Gao XH, Ren ZH, Zhao YX et al (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li JL, Undurraga S et al (2001) Drought and salt tolerant plants result from overexpression of the AVP1 H+ pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A et al (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. PNAS-USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Ge LF, Chao DY, Shi M et al (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC et al (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gong Q, Li P, Ma S et al (2005a) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Dong CH, Lee H et al (2005b) A DEAD box RNA helicase is essential form RNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267

    Article  PubMed  CAS  Google Scholar 

  • Gorham J, Bristol A, Young EM et al (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. J Exp Bot 41:1095–1101

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol Plant Mol Biol 31:149–190

    CAS  Google Scholar 

  • Grover A, Aggarwal PK, Kapoor A et al (2003) Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci 84:355–367

    Google Scholar 

  • Guo S, Yin H, Zhang X et al (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50

    Article  PubMed  CAS  Google Scholar 

  • Gurganus MC, Nuzhdin SV, Leips JW et al (1999) High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152:1585–1604

    PubMed  CAS  Google Scholar 

  • Ham BK, Park JM, Lee SB et al (2006) Tobacco Tsip1, a DnaJ-Type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. Plant Cell 18:2005–2020

    Article  PubMed  CAS  Google Scholar 

  • He CX, Yan JQ, Shen GX et al (2005) Expression of an arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fibre yield in the field. Plant Cell Physiol 46:1848–1854

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P et al (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A et al (2001) Antioxidant systems and O-2(.-)/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T et al (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    Article  PubMed  CAS  Google Scholar 

  • Hong C, Hsu YT, Tsai YH et al (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58:3273–3283

    Article  PubMed  CAS  Google Scholar 

  • Igartua E (1995) Choice of selection environments for improving crops yields in saline areas. Theor Appl Genet 91:1061–1021

    Article  Google Scholar 

  • Igartua E, Gracia P (1999) Divergent selection for salinity tolerance at germination-emergence stage in grain sorghum. Maydica 43:161–168

    Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ et al (2007) Genetic and genomics approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–550

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Sans JF et al (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E et al (2006) Evidence that differential gene expression between the halophyte Thellungiella halophila and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:120–134

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Khatum S, Flowers TJ (1995) Effects of salinity on seed set in rice. Plant Cell Environ 18:61–67

    Article  Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT et al (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24

    Article  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Lark KG, Chase K, Adler F et al (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Boerma HR, Villagarcia MR et al (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Prasad V, Yang PT et al (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    Article  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW et al (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  PubMed  CAS  Google Scholar 

  • Leidi EO, Barragán V, Cubero B et al (2005) Function of endosomal NHX antiporters on plant K nutrition. Society for Experimental Biology Annual Main Meeting. Comp Biochem Physiol-Part A 141:S342

    Google Scholar 

  • Leung H (2008) Stressed genomics - bringing relief to rice fields. Curr Opin Plant Biol 11:201–208

    PubMed  CAS  Google Scholar 

  • Lewis IN (1984) A vital resource in danger. Calif Agric 38:2

    Google Scholar 

  • Li J, Jiang G, Huang P et al (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 90:41–48

    Article  CAS  Google Scholar 

  • Li WYF, Wong FL, Tsai SN et al (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122–1137

    Article  PubMed  CAS  Google Scholar 

  • Lilley JM, Ludlow MM (1996) Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Res 48:185–197

    Article  Google Scholar 

  • Liu H, Wang QQ, Yu MM et al (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ 31:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Wang L, Xu Y et al (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Zhong NQ, Wang GL et al (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838

    Article  PubMed  CAS  Google Scholar 

  • Lozano R, Giménez E, Cara B et al (2009) Developmental genetics of tomato, a model species in plant biology. Int J Dev Biol (in press)

    Google Scholar 

  • Lu SY, Jing YX, Shen SH et al (2005) Antiporter gene from Hordum brevisubulatum (Trin.) Link and its overexpression in transgenic tobacco. J Integr Plant Biol 47:343–349

    Article  CAS  Google Scholar 

  • Lukens LN, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74:291–302

    Article  CAS  Google Scholar 

  • Lv S, Zhang KW, Gao Q et al (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. ­J Exp Bot 57:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran M, Huang N, Sreerangasamy SR et al (2000) Mapping QTL associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6:145–155

    Article  CAS  Google Scholar 

  • Manneh B, Stam P, Struik PC et al (2007) QTL-based analysis of genotype-by-environment interaction for grain yield of rice in stress and non-stress environments. Euphytica 156:213–226

    Article  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B et al (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rodriguez MM, Estañ MT, Moyano E et al (2008) The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ Exp Bot 63:392–401

    Article  CAS  Google Scholar 

  • Matsushita N, Matoh T (1991) Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol Plant 83:170–176

    Article  CAS  Google Scholar 

  • Mikiko LK, Levesley A, Koebner RMD et al (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  Google Scholar 

  • Mittova V, Tal M, Volokita M et al (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  PubMed  CAS  Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals?. Trends Plant Sci 12:534–540

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell E (1997) Salt tolerance in Lycopersicon species. VI. Genotype-by-salinity interaction in quntitaive trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713

    Article  Google Scholar 

  • Moradi F, Ismail AM, Gregorio GB et al (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J Plant Physiol 8:105–116

    Google Scholar 

  • Morgan JM (1992) Osmotic components and properties associated with genotypic differences in osmorregulation in wheat. Aust J Plant Physiol 19:67–7676

    Article  Google Scholar 

  • Moya JL, Gomez-Cadenas A, Primo-Millo E et al (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO et al (2008) The HAL1 function on Na+ homeostasis is maintained over time in salt-treated transgenic tomato plants, but the high reduction of Na+ in leaf is not associated with salt tolerance. Physiol Plant 133:288–297

    Article  PubMed  CAS  Google Scholar 

  • Murthy M, Tester M (1996) Compatible solutes and salt tolerance: misuse of transgenic tobacco. Trends Plant Sci 1:294–295

    Google Scholar 

  • Nagata T, Iizumi S, Satoh K et al (2008) Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol Biol 66:565–585

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LSP, Nguyen DV et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198

    Article  CAS  Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species - a review. Forest Ecol Manage 139:1–19

    Article  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A et al (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Owttrim GW (2006) RNA helicase and abiotic stress. Nucleic Acids Res 34:3220–3230

    Article  PubMed  CAS  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO et al (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT et al (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8:355–357

    Article  PubMed  CAS  Google Scholar 

  • Perez-Alfocea F, Estañ MT, Santa Cruz A et al (1993) Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J Hort Sci 68:1021–1027

    CAS  Google Scholar 

  • Perez-Alfocea F, Santa Cruz A, Guerrier G et al (1994) NaCl stress-induced organic solute changes on leaves and calli of Lycopersicon esculentum, L. pennellii and their interspecific hybrid. J Plant Physiol 143:106–111

    CAS  Google Scholar 

  • Pineda B (2005) Análisis functional de diversos genes relacionados con la tolerancia a la salinidad y el estrés hídrico en plantas transgénicas de tomate (Lycopersicon esculentum Mill). Ph.D. thesis. Universidad Politécnica de Valencia, Valencia, Spain

    Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  PubMed  CAS  Google Scholar 

  • Qiao WH, Zhao XY, Li W et al (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Ohta M, Shi H et al (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W et al (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Ravens JA (1985) Regulation of pH and generation of osmolarity in vascular plants - a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rios G, Ferrando A, Serrano R (1997) Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  CAS  Google Scholar 

  • Rohila JS, Jainb RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Romero C, Belles JM, Vaya JL et al (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh MD, Pendery BM, James DW (1993) Variation in the salinity tolerance of strawberry clover (Trifolium fragiferum L.). Plant Soil 153:265–271

    Article  Google Scholar 

  • Rus A, Lee BH, Muñoz-Mayor A et al (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  PubMed  CAS  Google Scholar 

  • Rus AM, Estañ MT, Gisbert C et al (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    Article  CAS  Google Scholar 

  • Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Phan XH, Sopory SK et al (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U et al (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    PubMed  CAS  Google Scholar 

  • Santa-Cruz A, Acosta M, Rus A et al (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37:65–71

    Article  CAS  Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  CAS  Google Scholar 

  • Seong ES, Cho HS, Choi D et al (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Culiañez-Macia FA, Moreno V (1999) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hort 78:261–269

    Article  CAS  Google Scholar 

  • Shannon MC, Gronwald JW, Tal M (1987) Effects of salinity on growth and accumulation of inorganic ions in cultivated and wild tomato species. J Am Soc Hort Sci 112:416–423

    CAS  Google Scholar 

  • Shi HZ, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    Article  PubMed  CAS  Google Scholar 

  • Shi HZ, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM et al (2002) The putative plasma membrane Na1/H1 antiporter SOS1 controls long-distance Na1 transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T et al (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  PubMed  CAS  Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O et al (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    Article  CAS  Google Scholar 

  • Sohn KH, Lee SC, Jung HW et al (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915

    Article  PubMed  CAS  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L et al (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Sun YX, Wang D, Bai YL et al (2006) Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: the reduced Na+ level is the basis of the increased salt tolerance. Chin Sci Bull 51:1306–1315

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y et al (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95

    Article  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Huang C, Yu R et al (2006) Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African J Biotechnol 5:1041–1044

    CAS  Google Scholar 

  • Tonsor SJ, Alonso-Blanco C, Koornneef M (2005) Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ 28:2–20

    Article  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D et al (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628

    Article  PubMed  CAS  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  PubMed  CAS  Google Scholar 

  • Villalta I, Reina-Sánchez A, Bolarín MC et al (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan NH, Hirata E et al (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zuo K, Wu W et al (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plant 48:509–515

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang WQ, Li Y, Zhang YY et al (2007) Comparative expression analysis of three genes from the Arabidopsis vacuolar Na+/H+ antiporter (AtNHX) family in relation to abiotic stresses. Chin Sci Bull 52:1754–1763

    Article  CAS  Google Scholar 

  • Weckwertha W (2008) Integration of metabolomics and proteomics in molecular plant physiology – coping with the complexity by data-dimensionality reduction. Physiol Plant 132:176–189

    Article  CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW et al (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  PubMed  CAS  Google Scholar 

  • Wu YY, Chen QJ, Chen M et al (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP et al (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yang AF, Duan XG, Gu XF et al (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tissue Organ Cult 83:259–270

    Article  CAS  Google Scholar 

  • Yang L, Tang R, Zhu J et al (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2b, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66:329–343

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222

    Article  CAS  Google Scholar 

  • Yeo AR (1992) Variation and inheritance of sodium transport in rice. Plant Soil 146:109–116

    Article  CAS  Google Scholar 

  • Yeo AR (2007) Salinity. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blckwell, Oxford

    Chapter  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Ion transport in Suaeda maritima: its relation to growth, and implications for the pathway of radial transport of ions across the root. J Exp Bot 37:143–159

    Article  Google Scholar 

  • Yeo AR, Yeo, ME, Flowers SA et al (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79:377–384

    Article  Google Scholar 

  • Yin XY, Yang AF, Zhang KW et al (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861

    CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B et al (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP et al (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Xu J (2007) Molecular mechanism of dehydrin in response to environmental stress in plant. Prog Nat Sci 17:237–246

    Article  CAS  Google Scholar 

  • Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Organ Cult 86:349–358

    Article  CAS  Google Scholar 

  • Zhao F, Guo S, Zhang H et al (2006a) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

  • Zhao F, Wang Z, Zhang Q et al (2006b) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Zhang XJ, Li PH et al (2006c) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  CAS  Google Scholar 

  • Zhao J, Zhi D, Xue Z et al (2007) Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. J Plant Physiol 164:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Zhou SF, Chen XY, Xue XN et al (2007) Physiological and growth responses of tomato progenies harboring the betaine alhyde dehydrogenase gene to salt stress. J Integr Plant Biol 49:628–637

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Dr. Eva Domínguez, Estación Experimental La Mayora, CSIC, for valuable suggestions while editing the manuscript. V. Moreno, B. Pineda and M.C. Bolarín would like to thank the CICYT (Ministerio de Ciencia e Innovación, Spain) for financial support (project AGL2006 15290). V. Moreno would also like to thank Dr. Thomas Jack, Department of Biological Sciences, Dartmouth College, USA for providing the pD991 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Cuartero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cuartero, J., Bolarin, M.C., Moreno, V., Pineda, B. (2010). Molecular Tools for Enhancing Salinity Tolerance in Plants. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_16

Download citation

Publish with us

Policies and ethics