Skip to main content

Advertisement

Log in

Genetic and genomic approaches to develop rice germplasm for problem soils

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Soils that contain toxic amounts of minerals or are deficient in essential plant nutrients are widespread globally and seriously constrain rice production. New methods are necessary to incorporate the complex adaptive traits associated with tolerance of these abiotic stresses, while simultaneously retaining the high yield potential of rice varieties when conditions are favorable. Significant progress in the genetic characterization of stress response pathways and recent advances in genomics have provided powerful tools for in-depth dissection of tolerance mechanisms. Additionally, tolerance of most of these abiotic stresses in rice is controlled by a few QTLs with large effects despite the intricacy of the numerous traits involved. Genetic dissection of these QTLs and their incorporation into high-yielding varieties will significantly enhance and stabilize rice productivity in these problem soils. Current efforts at IRRI and in rice breeding programs worldwide are seeking to explore diverse germplasm collections and genetically dissect the causal mechanisms of tolerance to facilitate their use in breeding. This review focuses on salinity and P and Zn deficiency as the major problems encountered in rice soils, and examines current understanding of the mechanisms involved and efforts toward germplasm improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbar M, Yabuno T, Nakao S (1972) Breeding for saline resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Jpn J Breed 22:277–284

    Google Scholar 

  • Akita S, Cabuslay GS (1990) Physiological basis of differential response to salinity in rice cultivars. Plant Soil 123:277–294

    CAS  Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na/H antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    PubMed  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    PubMed  CAS  Google Scholar 

  • Batjes NH (1997) A world data set of derived soil properties by FAO-UNESCO soil unit for global modeling. Soil Use Manage 13:9–16

    Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury W, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P, Tester M, Very A-A, Sentenac HandCasse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    PubMed  CAS  Google Scholar 

  • Bhumbla DR, Abrol IP (1978) Saline and sodic soils. In: Soils and rice. International Rice Research Institute, Manila, Philippines, pp 719–738

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochem Biophys Acta 1465:140–151

    PubMed  CAS  Google Scholar 

  • Blumwald E, Poole R (1985) Na+/H+-antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    PubMed  CAS  Google Scholar 

  • Blumwald E, Poole R (1987) Salt-tolerance in suspension cultures of sugar beet. I. Induction of Na+/H+-antiport activity at the tonoplast by growth in salt. Plant Physiol 83:884–887

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Plant Biol 9:180–188

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen P (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RLFP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Bradbury LMT, Henry RJ, Jin Q, Reinke RF, Waters DLE (2005) A perfect marker for fragrance genotyping in rice. Mol Breed 16:279–283

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contribution of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomata movement. Plant Cell 16:1143–1162

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    PubMed  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    PubMed  CAS  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    PubMed  CAS  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependant, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    PubMed  CAS  Google Scholar 

  • Davies TGE, Ying J, Xu Q, Li ZS, Li J, Gordon-Weeks R (2002) High-affinity phosphate transporters in wheat. Plant Cell Environ 25:1325–1339

    CAS  Google Scholar 

  • Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Demidchik V, Tester M. (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    PubMed  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54–58

    CAS  Google Scholar 

  • Dobermann A, Fairhurst T (2000a) Phosphorus deficiency. In: Rice: nutrient disorders and nutrient management. International Rice Research Institute, Los Baños, Philippines, pp 60–71

  • Dobermann A, Fairhurst T (2000b) Zinc deficiency. In: Rice: nutrient disorders and nutrient management. Potash and Phosphate Institute, Potash and Phosphate Institute of Canada and International Rice Research Institute, Singapore, pp 84–89

  • Dong B, Rengel Z, Delhaize E (1998) Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205(2):251–256

    PubMed  CAS  Google Scholar 

  • Fageria NK, Baligar VC (1997) Upland rice genotypes evaluation for phosphorus use efficiency. J Plant Nutr 20:499–509

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol 88:363–373

    CAS  Google Scholar 

  • Flowers TJ, Duque E, Hajibagheri MA, McGonigle TP, Yeo AR (1985) The effect of salinity on the ultrastructure and net photosynthesis of two varieties of rice: further evidence for a cellular component of salt resistance. New Phytol 100:37–43

    Google Scholar 

  • Forno DA, Yoshida S, Asher CJ (1975) Zinc deficiency in rice. I. Soil factors associated with the deficiency. Plant Soil 42:537–550

    CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyoa A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na/H antiporter from rice. Plant Cell Physiol 45:149–159

    Google Scholar 

  • Gao X, Zou C, Zhang F, van der Zee S, Hoffland E (2005) Tolerance to zinc deficiency in rice correlates with zinc uptake and translocation. Plant Soil 278:253–261

    CAS  Google Scholar 

  • Garcia A, Rizzo CA, Ud-Din J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium : potassium selectivity differs between rice and wheat. Plant Cell Environ 20:1167–1174

    CAS  Google Scholar 

  • Garciadeblás B, Senn ME, Banuelos A, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    PubMed  Google Scholar 

  • Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:869–882

    CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Nat Acad Sci USA 96:1480–1485

    PubMed  CAS  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005) Expression of fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotech J 3:129–140

    CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Phys Plantarum 126:407–417

    Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    PubMed  CAS  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Bladeras E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    PubMed  CAS  Google Scholar 

  • Graham JH, Miller RM (2005) Mycorrhizas: gene to function. Plant Soil 274:79–100

    CAS  Google Scholar 

  • Grattan SR, Zeng L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. Cal Agric 56:189–195

    Article  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutrition 132:500S–502S

    Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22. International Rice Research Institute, Manila, Philippines

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101

    Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95(12):7220–7224

    Google Scholar 

  • Guimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    PubMed  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    PubMed  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003) Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol 131:595–602

    PubMed  CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    CAS  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V (2003) Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250:349–357

    CAS  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V, Neumann G. (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Exp Bot 54:163–173

    CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332

    PubMed  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang QF, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    PubMed  CAS  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

    CAS  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H-Y, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    PubMed  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants: diverse genes and physiological functions. Plant Physiol 136:2457–2462

    PubMed  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Ymada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oriza sativa. Plant J 27:115–128

    Google Scholar 

  • Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell Environ 28:353–364

    CAS  Google Scholar 

  • IRRI (1996) Standard evaluation system for rice, 4th edn. International Rice Research Institute, Manila, Philippines, p 52

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    PubMed  CAS  Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biol 29:1393–1403

    CAS  Google Scholar 

  • Jbir N, Chaibi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. Contes Rendus Acad Sci III 324:863–868

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    PubMed  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Kirk GJD, George T, Courtois B, Senadhira D (1998) Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems. Field Crops Res 56:73–92

    Google Scholar 

  • Kitagawa T, Morishita T, Tachibana Y, Namai H, Ohta Y (1986) Differential aluminum resistance of wheat varieties and organic acid secretion. Jpn J Soil Sci Plant Nutr 57:352–358

    CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    PubMed  CAS  Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    PubMed  CAS  Google Scholar 

  • LaHaye PA, Epstein E (1969) Salt toleration by plants: enhancement with calcium. Science 166:395–396

    PubMed  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    PubMed  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    PubMed  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    PubMed  CAS  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging: an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    CAS  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    CAS  Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    PubMed  CAS  Google Scholar 

  • Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen SX, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    PubMed  CAS  Google Scholar 

  • Mackill DJ (2006) Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer international symposium. Blackwell Pub., Ames, IA, pp 201–212

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press Limited, London

    Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24

    CAS  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    PubMed  CAS  Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Google Scholar 

  • Matsumoto T, Wu JZ, Kanamori H et al (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • McNally K, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H (2006) Sequencing multiple and diverse rice varieties: connecting whole-genome variation with phenotype. Plant Physiol 141:26–31

    PubMed  CAS  Google Scholar 

  • Ming F, Mi GH, Lu Q, Yin S, Zhang SS, Guo B, Shen DL (2005) Cloning and characterization of cDNA for the Oryza sativa phosphate transporter. Cell Mol Biol Lett 10:401–411

    PubMed  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM, Gregorio GB, Egdane JA (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Ind J Plant Physiol 8:105–116

    Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W-R (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    PubMed  CAS  Google Scholar 

  • Muller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419

    PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    PubMed  CAS  Google Scholar 

  • Nakayama H, Horie T, Yonamine I, Shinmyo A, Yoshida K (2005) Improving salt tolerance in plant cells. Plant Biotechnol 22:477–487

    CAS  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet. doi:10.1007/s00122-007-0607-0

  • Nene YL (1966) Symptoms, cause and control of Khaira disease of paddy. Bull Ind Phytopathol Soc 3:97–191

    Google Scholar 

  • Nestel P, Bouis H, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    PubMed  CAS  Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: approaches to crop improvement. Springer-Verlag, Berlin, pp 175–200

    Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH (2001) Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010

    CAS  Google Scholar 

  • Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369

    CAS  Google Scholar 

  • Ninamango CFE, Guimaraes CT, Martins PR, Parentoni SN, Carneiro NP et al (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130:223–232

    Google Scholar 

  • Oshima Y (1997) The phosphatase system in Saccharomyces cerevisiae. Genes Genet Syst 72:323–334

    PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    PubMed  CAS  Google Scholar 

  • Pearson GA, Bernstein L (1959) Salinity effects at several growth stages of rice. Agron J 51:654–657

    Article  Google Scholar 

  • Peng S, Ismail AM (2004) Physiological basis of yield and environmental adaptation in rice. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 83–140

    Google Scholar 

  • Pessarakli M, Szabolcs I (1999) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pp 1–16

    Google Scholar 

  • Ponnamperuma FN (1994) Evaluation and improvement of lands for wetland rice production. In: Senadhira D (ed) Rice and problem soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. International Rice Research Institute, Manila, Philippines

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Qadar A (2002) Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations, and phosphorus/zinc ratio in their leaves. J Plant Nutr 25:457–473

    CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD (2002) Tolerance of rice germplsam to salinity and other soil chemical stresses in tidal wetlands. Field Crops Res 76:111–121

    Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Google Scholar 

  • Radersma S, Grierson PF (2004) Phosphorus mobilisation in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219

    CAS  Google Scholar 

  • Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley: evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36

    PubMed  CAS  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Overexpression of a high-affinity phosphate transporter in transgenic barley does not enhance phosphorus uptake rates. Func Plant Biol 31:141–148

    CAS  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet 37:1141–1146

    PubMed  CAS  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Envron 15:625–632

    CAS  Google Scholar 

  • Rengel Z, Romheld V, Marschner H (1998) Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J Plant Physiol 152:433–438

    CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    PubMed  CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    PubMed  CAS  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. In: Tiessen H (ed) Phosphorus in the global environment: transfers, cycles and management. Wiley, New York, pp 27–42

    Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B-L, Matsumoto TK, Koiwa H, Zhu J-K, Bressan A, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Nat Acad Sci USA 98:14150–14155

    PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    PubMed  CAS  Google Scholar 

  • Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarroa A (1997) The HAKl gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    PubMed  Google Scholar 

  • Sasaki H, Hirose T, Watanabe Y, Ohsugi R (1998) Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol 118:929–934

    PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Ann Rev Biophys Biomol Struct 23:441–471

    CAS  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    PubMed  Google Scholar 

  • Senadhira D (ed) (1994) Rice and problem soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4. International Rice Research Institute, Manila, Philippines, pp 1–2

  • Senadhira D, Zapata-Arias FJ, Gregorio GB, Alejar MS, de la Cruz HC, Padolina TF, Galvez AM (2002) Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res 76:103–110

    Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:99–123

    Google Scholar 

  • Shimizu A, Guerta CQ, Gregorio GB, Ikehashi H (2005) Improved mass screening of tolerance to iron toxicity in rice by lowering temperature of culture solution. J Plant Nutr 28:1481–1493

    CAS  Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368

    PubMed  CAS  Google Scholar 

  • Singh B, Natesan SKA, Singh BK, Usha K (2003) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    Google Scholar 

  • Singh RK, Singh KN, Mishra B, Sharma SK, Tyagi NK (2004) Harnessing plant salt tolerance for overcoming sodicity constraints: an Indian experience. In: Advances in sodic land reclamation. Concept paper for the international conference on “sustainable management of sodic soils” held at Lucknow, India, 9–14 February, 2004, pp 81–120

  • Smith FW, Cybinski DH, Rae AL (1999) Regulation of expression of genes encoding phosphate transporters in barley roots. In: Gissel-Nielsen G, Jensen A (eds) Plant nutrition: molecular biology and genetics. Proceedings of the sixth international symposium on genetics and molecular biology of plant nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 145–150

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    PubMed  CAS  Google Scholar 

  • Suzuki MT, Takashi T, Satoshi W, Shinpei M, Junshi Y, Naoki K, Shoshi K, Hiromi N, Satoshi M, Naoko KN (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    PubMed  CAS  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+ pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    PubMed  CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnol 19:466–469

    CAS  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    PubMed  CAS  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    PubMed  CAS  Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hort 78:175–235

    CAS  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamagushi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    PubMed  CAS  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed  Google Scholar 

  • von Wiren N, Marschner H, Romheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007b) Large-scale expression profiling and physiological characterization of jasmoic acid-mediated adaptation of barley to salinity. Plant Cell Environ 30:410–421

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare) during salinity stress. Func Intgr Genom 6(2):143–156

    CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007a) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. doi:10.1007/s11103-006-9112-0

  • Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158:239–248

    CAS  Google Scholar 

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60:11–26

    Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958

    PubMed  CAS  Google Scholar 

  • Wissuwa M (2005) Combining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil 269:57–68

    CAS  Google Scholar 

  • Wissuwa M, Ae N (2001a) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    CAS  Google Scholar 

  • Wissuwa M, Ae N (2001b) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48

    CAS  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    CAS  Google Scholar 

  • Wu P, Hu B, Liao CY, Zhu JM, Wu YR, Senadhira D, Paterson AH (1998) Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203:217–226

    CAS  Google Scholar 

  • Wu P, Liao CY, Hu B, Yi KK, Jin WZ et al (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303

    CAS  Google Scholar 

  • Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular marker linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196:317–320

    CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald RC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Yamanouchi M, Yoshida S (1982) The difference of leaf tissues to tolerance for iron toxicity among rice varieties. Plant Sci Plant Nutr 28:983

    Google Scholar 

  • Yang X, Römheld V, Marschner H (1994a) Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1–7

    CAS  Google Scholar 

  • Yang X, Römheld V, Marschner H (1994b) Uptake of iron, zinc, manganese, and copper by seedlings of hybrid and traditional rice cultivars from different soil types. J Plant Nutr 17:319–331

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195

    CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:161–173

    Article  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Google Scholar 

  • Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79:377–384

    Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9:426–432

    PubMed  CAS  Google Scholar 

  • Yoshida S, Ahn JS, Forno DA (1973) Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 19:83–93

    CAS  Google Scholar 

  • Yoshida S, Tanaka A (1969) Zinc deficiency of the rice plant in calcareous soils. Soil Sci Plant Nutr 15:75–80

    CAS  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field: using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    PubMed  CAS  Google Scholar 

  • Zhang GY, Guo Y, Chen SL, Chen SY (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci 110:227–234

    CAS  Google Scholar 

  • Zhang H-X, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Poc Natl Acad Sci USA 98:12832–12836

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Google Scholar 

  • Zheng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affecting rice growth and yield components. Agric Water Manage 48:191–206

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs Hei Leung and David J. Mackill for their helpful comments and discussion during the preparation of this review and for critically reading the manuscript. Research on problem soils at IRRI is partially supported by the Generation Challenge Program (Project 2) and the Linkage program to strengthen International Rice Functional Genomics Consortium supported by USAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbagi M. Ismail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, A.M., Heuer, S., Thomson, M.J. et al. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65, 547–570 (2007). https://doi.org/10.1007/s11103-007-9215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9215-2

Keywords

Navigation