Skip to main content

Structurally motivated damage models for arterial walls. Theory and application

  • Chapter
Modeling of Physiological Flows

Part of the book series: MS&A — Modeling, Simulation and Applications ((MS&A,volume 5))

Abstract

The mechanical integrity of the arterial wall is vital for the health of the individual. This integrity is in turn dependent on the state of the central load bearing components of the wall: collagen fibres, elastic fibres and smooth muscle. Of these, the elastic fibres, composed largely of the protein elastin, are viewed as responsible for the highly elastic behaviour of the wall at low loads [92]. The collagen fibres are recruited under increasing extension, leading to a highly nonlinear behaviour of the arterial wall [117]. They are responsible for the structural integrity of the wall at elevated physiological loads. Changes in the quantity, distribution, orientation and mechanical properties of these components (the microstructure) are known to occur as part of a healthy response to changing stimuli (e.g. growth and remodelling) as well as during pathological and damage processes in disease and aging. For example, degradation of the elastic fibres is linked to pathological conditions including cerebral aneurysms [12, 15, 20, 65], dissection aneurysms [101], arteriosclerosis [11, 44, 86, 113, 114], and complications from balloon angioplasty [84]. Age related arterial stiffening is attributed to degradation of the elastic fibres, possibly from fatigue failure [11, 30]. The subject of arterial damage is addressed in Sect. 6.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alastrué V.,Martínez M.A., Doblaré M., Menzel A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. Journal of the Mechanics and Physics of Solids 57(1): 178–203, 2009.

    Article  MATH  Google Scholar 

  2. Alastrué V., Sáez, P., Martínez, M.A., Doblaré, M.: On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech Res Commun 37(8): 700–706, 2010.

    Article  Google Scholar 

  3. Avolio A., Jones D., Tafazzoli-Shadpour M.: Quantification of alterations in structure and function of elastin in the arterial media. Hypertension 32(1): 170–175, 1998.

    Article  Google Scholar 

  4. Baker C.J., Fiore A., Connolly E.S., Baker K.Z., Solomon R.A.: Serum elastase and alpha-1-antitrypsin levels in patients with ruptured and unruptured cerebral aneurysms. Neurosurgery 37(1): 56–61; discussion 61–52, 1995.

    Article  Google Scholar 

  5. Balzani D., Schröder J., Gross D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater 2(6): 609–618, 2006.

    Article  Google Scholar 

  6. Bergel D.H.: The static elastic properties of the arterial wall. The Journal of Physiology 156(3): 445–457, 1961.

    Google Scholar 

  7. Betten J.: Formulation of anisotropic constitutive equations. In: J.P. Boehler (ed.) Applications of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, 292, pp. 227–250. International Center for Mechanical Sciences, Springer-Verlag, 1984.

    Google Scholar 

  8. Brandt T., Morcher M., Hausser I.: Association of cervical artery dissection with connective tissue abnormalities in skin and arteries. Frontiers of neurology and neuroscience 20: 16–29, 2005.

    Article  Google Scholar 

  9. Broom N., Ramsey G., Mackie R., Martins B., Stehbens W.: A new biomechanical approach to assessing the fragility of the internal elastic lamina of the arterial wall. Connective Tissue Research 30(2): 143–155, 1993.

    Article  Google Scholar 

  10. Bullitt E., Lin N., Smith J., Zeng D., Winer E., Carey L., Lin W., Ewend M.: Blood vessel morphological changes depicted with mr angiography during treatment of brain metastases: a feasibility study. Radiology 40: 824–830, 2007.

    Article  Google Scholar 

  11. Busby D.E., Burton A.C.: The effect of age on the elasticity of the major brain arteries. Canadian journal of physiology and pharmacology 43: 185–202, 1965.

    Article  Google Scholar 

  12. Cajander S., Hassler O.: Enzymatic destruction of the elastic lamella at the mouth of the cerebral berry aneurysm? Acta Neruol Scand 53: 171–181, 1976.

    Article  Google Scholar 

  13. Campbell G., Roach M.: The use of ligament efficiency to model fenestrations in the internal elastic lamina of cerebral arteries. I–modelling scheme. J Biomech 16: 875–882, 1983.

    Article  Google Scholar 

  14. Campbell G., Roach M.: The use of ligament efficiency to model fenestrations in the internal elastic lamina of cerebral arteries. II–analysis of the spatial geometry. J Biomech 16: 883–91, 1983.

    Article  Google Scholar 

  15. Campbell G., Roach M.: A physical model for the formation of evaginations: a prospective precursor to the creation of saccular aneurysms. Stroke 15: 642–52, 1984.

    Article  Google Scholar 

  16. Castaneda-Zuniga W.R., Amplatz K., Laerum F., Formanek A., Sibley R., Edwards J., Vlodaver Z.: Mechanics of angioplasty: an experimental approach. RadioGraphics 1(3): 1–14 (1981)

    Google Scholar 

  17. Castaneda-Zuniga W.R., Formanek A., Tadavarthy M., Vlodaver Z., Edwards J.E., Zollikofer C., Amplatz K.: The mechanism of balloon angioplasty. Radiology 135(3): 565–571, 1980.

    Google Scholar 

  18. Chavez L., Takahashi A., Yoshimoto T., Su C.C., Sugawara T., Fujii Y.: Morphological changes in normal canine basilar arteries after transluminal angioplasty. Neurol Res 12(1): 12–16 (1990)

    Google Scholar 

  19. Chyatte D., Reilly J., Tilson M.D.: Morphometric analysis of reticular and elastin fibres in the cerebral arteries of patients with intracranial aneurysms. Neurosurgery 26(6): 939–943, 1990.

    Article  Google Scholar 

  20. Connolly E.S.J., Fiore A.J., Winfree C.J., Prestigiacoma C.J., Goldman J.E., Solomon R.A.: Elastin degradation in the superficial temporal arteries of patients with intracranial aneurysms reflects changes in plasma elastase. Neurosurgery 40(5): 903–908; discussion 908–909, 1997.

    Article  Google Scholar 

  21. Connors J.J., Wojak J.C.: Percutaneous transluminal angioplasty for intracranial atherosclerotic lesions: evolution of technique and short-term results. J Neurosurg 91(3): 415–423, 1999.

    Article  Google Scholar 

  22. Cortes D.H., Lake S.P., Kadlowec J.A., Soslowsky L.J., Elliott D.M.: Characterizing the mechanical contribution of fibre angular distribution in connective tissue: comparison of two modeling approaches. Biomech Model Mechanobiol 9: 651–658, 2010.

    Article  Google Scholar 

  23. Courtney T., Sacks M., Stankus J., Guan J., Wagner W.: Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27: 3631–3638, 2006.

    Google Scholar 

  24. Cox G., Kable E.: Second-harmonic imaging of collagen. In: D.J. Taatjes, B.T. Mossman (eds.) Cell Imaging Techniques: Methods and Protocols, Methods in Molecular Biology, vol. 319, pp. 15–35 (2006)

    Article  Google Scholar 

  25. Davis E.C.: Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry and Cell Biology 100(1): 17–26, 1993.

    Article  Google Scholar 

  26. Ericksen J.E., Rivlin R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Rat. Mech. Anal. 3: 281–301, 1954.

    MathSciNet  MATH  Google Scholar 

  27. Federico S., Herzog W.: Towards an analytical model of soft biological tissues. Journal of biomechanics 41(16): 3309–3313, 2008.

    Article  MathSciNet  Google Scholar 

  28. Finlay H., McCullough L., Canham P.: Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32: 301–312, 1995.

    Google Scholar 

  29. Finlay H.M., McCullough L., Canham P.B.: Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32: 301–312, 1995.

    Google Scholar 

  30. Fonck E., Feigl G.G., Fasel J., Sage D., Unser M., Rufenacht D.A., Stergiopulos N.: Effect of aging on elastin functionality in human cerebral arteries. Stroke 40(7): 2552–2556, 2009.

    Article  Google Scholar 

  31. [31] Fonck E., Prodhom G., Roy S., Augsburger L., Rufenacht D.A., Stergiopulos N.: Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. American Journal Of Physiology. Heart And Circulatory Physiology 292(6): H2754–2763, 2007.

    Article  Google Scholar 

  32. Freed A., Einstein D., Vesely I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomechanics and Modeling in Mechanobiology 4(2): 100–117, 2005.

    Article  Google Scholar 

  33. Gao L., Hoi Y., Swartz D.D., Kolega J., Siddiqui A., Meng H.: Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke; A Journal Of Cerebral Circulation 39(7): 2085–2090, 2008.

    Article  Google Scholar 

  34. Gasser C.T., Holzapfel G.: Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering 35(5): 711–723, 2007.

    Article  Google Scholar 

  35. Gasser C.T., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal Of The Royal Society, Interface / The Royal Society 3(6): 15–35, 2006.

    Article  Google Scholar 

  36. Gasser T.C., Holzapfel G.: Arate-independent elastoplastic constitutive model for biological fibre-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Computational Mechanics 29(4-5): 340–360, 2002.

    Article  MATH  Google Scholar 

  37. Gleason R.L., Humphrey J.: A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Mathematical Medicine And Biology: A Journal Of The IMA 22(4): 347–369, 2005.

    Article  MATH  Google Scholar 

  38. Gleason R.L., Taber L.A., Humphrey J.D.: A 2-d model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. Journal of Biomechanical Engineering 126(3): 371–381, 2004.

    Article  Google Scholar 

  39. Goktepe S., Miehe C.: A micro-macro approach to rubber-like materials. part iii: The microsphere model of anisotropic mullins-type damage. Journal of the Mechanics and Physics of Solids 53(10): 2259–2283, 2005.

    Article  MathSciNet  Google Scholar 

  40. Gonzalez J., Briones A., Starcher B., Conde M., Somoza B., Daly C., Vila E., McGrath I., Arribas S.: Influence of elastin on rat small artery mechanical properties. Exp Physiol 90: 463–8, 2005.

    Article  Google Scholar 

  41. Greenwald S.E.: Ageing of the conduit arteries. The Journal of pathology 211(2): 157–172, 2007.

    Article  Google Scholar 

  42. Gundiah N., Ratcliffe M.B., Pruitt L.: Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. Journal of Biomechanics 40(3): 586–594, 2007.

    Article  Google Scholar 

  43. Gundiah N., Ratcliffe M.B., Pruitt L.A.: The biomechanics of arterial elastin. Journal of the Mechanical Behavior of Biomedical Materials 2(3): 288–296, 2009.

    Article  Google Scholar 

  44. Hadjinikolaou L., Kotidis K., Galinanes M.: Relationship between reduced elasticity of extracardiac vessels and left main stem coronary artery disease. European heart journal 25(6): 508–513, 2004.

    Article  Google Scholar 

  45. Hart W., Goldbaum M., Cote B., Kube P., Nelson M.: Measurement and classification of retinal vascular tortuosity. International Journal of Medical Informatics 53: 239–252, 1999.

    Article  Google Scholar 

  46. Hashimoto N., Kim C., Kikuchi H., Kojima M., Kang Y., Hazama F.: Experimental induction of cerebral aneurysms in monkeys. Journal of Neurosurgery 67(6): 903–905, 1987.

    Article  Google Scholar 

  47. Hassler O.: Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta psychiatrica Scandinavica 154: 1–145, 1961.

    Google Scholar 

  48. Higashida R.T., Halbach V.V., Dowd C.F., Dormandy B., Bell J., Hieshima G.B.: Intravascular balloon dilatation therapy for intracranial arterial vasospasm: patient selection, technique, and clinical results. Neurosurg Rev 15(2): 89–95, 1992.

    Article  Google Scholar 

  49. Hill M., Robertson A.M.: Combined histological and mechanical evaluation of isotropic damage to elastin in cerebral arteries. In: 6th World Congress on Biomechanics. Singapore, 2010.

    Google Scholar 

  50. Hill M., Robertson A.: Abrupt recruitment of medial collagen fibres in the rabbit carotid artery – SBC2011-5341. Proceedings of the ASME 2011 Summer Bioengineering Conference (SBC2011), June 22–25, Nemacolin Woodlands Resort. Farmington, PA, USA, 2 pages, 2011.

    Google Scholar 

  51. Holzapfel A.P.G.A.: Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. Journal of Biomechanical Engineering 130(6): 061,006–061,012, 2008.

    Google Scholar 

  52. Holzapfel G., Gasser T., Ogden R.: Anew constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61(1–3): 1–48, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  53. Holzapfel G.A.: Nonlinear Solid Mechanics A Continuum Approach for Engineering. J. Wiley & Sons, 2000.

    MATH  Google Scholar 

  54. Holzapfel G.A., Ogden R.W.: Constitutive modelling of arteries. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466(2118): 1551–1597, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  55. Holzapfel G.A., Ogden R.W.: Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. Journal of The Royal Society Interface 7(46): 787–799, 2010.

    Article  Google Scholar 

  56. Holzapfel G.A., Sommer G., Gasser C.T., Regitnig P.: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289: H2048–H2058, 2005.

    Article  Google Scholar 

  57. Honma Y., Fujiwara T., Irie K., Ohkawa M., Nagao S.: Morphological changes in human cerebral arteries after pta for vasospasm caused by subarachnoid hemorrhage. Neurosurgery 36(6): 1073–1081, 1995.

    Article  Google Scholar 

  58. Humphrey J.D., Baek S., Niklason L.E.: Biochemomechanics of cerebral vasospasm and its resolution: I. a new hypothesis and theoretical framework. Annals of Biomedical Engineering 35(9): 1485–1497, 2007.

    Article  Google Scholar 

  59. Humphrey J.D., Rajagopal K.R.: A constrained mixture model for growth and remodeling of soft tissues. Mathematical Models and Methods in Applied Sciences 12(3): 407–430, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  60. Humphrey J.D., Rajagopal K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomechanics And Modeling In Mechanobiology 2(2): 109–126, 2003.

    Article  Google Scholar 

  61. Jiang C.F., Avolio A.P.: Characterisation of structural changes in the arterial elastic matrix by a new fractal feature: directional fractal curve. Medical & biological engineering & computing 35(3): 246–252, 1997.

    Article  Google Scholar 

  62. Kachanov L.: Time of rupture process under creep conditions. IVZ Akad. Nauk, S.S.R., Otd Tech Nauk 8: 26–31 (1958)

    Google Scholar 

  63. Keeley F.W.: The synthesis of soluble and insoluble elastin in chicken aorta as a function of development and age effect of a high cholesterol diet. Canadian journal of biochemistry 57(11): 1273–1280 (1979)

    Article  Google Scholar 

  64. Kondo S., Hashimoto N., Kikuchi H., Hazama F., Nagata I., Kataoka H.: Cerebral aneurysms arising at nonbranching sites an experimental study. Stroke 28(2): 398–403; discussion 403–394, 1997.

    Article  Google Scholar 

  65. Krex D., Schackert H.K., Schackert G.: Genesis of cerebral aneurysms–an update. Acta Neurochirurgica 143(5): 429–448; discussion 448–429, 2001.

    Article  Google Scholar 

  66. Lanir Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. Journal of biomechanics 12(6): 423–436, 1979.

    Article  Google Scholar 

  67. Lanir Y.: Constitutive equations for fibrous connective tissues. Journal of biomechanics 16(1): 1–12, 1983.

    Article  Google Scholar 

  68. Lee R.M.: Morphology of cerebral arteries. Pharmacology & therapeutics 66(1): 149–173, 1995.

    Article  Google Scholar 

  69. Lematire J., Desmorat R.: Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, 2005.

    Google Scholar 

  70. Li D.: Structural multi-mechanism model with anisotropic damage for cerebral arterial tissues and its finite element modeling. Ph.D. thesis, University of Pittsburgh, 2009.

    Google Scholar 

  71. Li D., Robertson, A.: A structural multi-mechanism constitutive model for cerebral arterial tissue. Int. J. Solids Struct. 46: 2920–2928, 2009.

    Article  MATH  Google Scholar 

  72. Li D., Robertson, A.M.: Finite element modeling of cerebral angioplasty using a multimechanism structural damage model. In: Proceedings of the ASME 2009 Summer Bioengineering Conference (SBC-2009), 2009.

    Google Scholar 

  73. Li D., Robertson A.M.: A structural damage model for cerebral arterial tissue and angioplasty simulation. In: 10th US National Congress on Computational Mechanics (USNCCM X), 2009.

    Google Scholar 

  74. Li D., Robertson A.M.: A structural multi-mechanism damage model for cerebral arterial tissue. J. Biomech. Eng. 131: 8 pages, 2009. Doi: 10.1115/1.3202559

    Google Scholar 

  75. Li D., Robertson A.M., Guoyu L.: Finite element modeling of cerebral angioplasty using a structural multi-mechanism anisotropic damage model. submitted for publication, 2011.

    Google Scholar 

  76. Meng H., Swartz D.D., Wang Z., Hoi Y., Kolega J., Metaxa E.M., Szymanski M.P., Yamamoto J., Sauvageau E., Levy E.I.: A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59(5): 1094–100; discussion 1100–1, 2006.

    Google Scholar 

  77. Meng H., Wang Z., Hoi Y., Gao L., Metaxa E., Swartz D.D., Kolega J.: Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6): 1924–1931, 2007.

    Article  Google Scholar 

  78. Miehe C.: Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials. Eur. J. Mech. A/Solids 14(5): 697–720, 1995.

    MATH  Google Scholar 

  79. Mohan D., Melvin J.W.: Failure properties of passive human aortic tissue. i–uniaxial tension tests. Journal of biomechanics 15(11): 887–902 (1982)

    Article  Google Scholar 

  80. Montes G.S.: Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20(1): 15–27, 1996.

    Article  Google Scholar 

  81. Morimoto M., Miyamoto S., Mizoguchi A., Kume N., Kita T., Hashimoto N.: Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke; A Journal Of Cerebral Circulation 33(7): 1911–1915, 2002.

    Article  Google Scholar 

  82. Mullins L.: Effect of stretching on the properties of rubber. Rubber Chem. Technol. 21: 281–300, 1948.

    Article  Google Scholar 

  83. Mullins L.: Softening of rubber by deformation. Rubber Chemistry and Technology 42: 339–362, 1969.

    Article  Google Scholar 

  84. Oktay H.: Continuum damage mechanics of balloon angioplasty doctoral, University of Maryland, Baltimore County (1993)

    Google Scholar 

  85. O’Rourke M.: Mechanical principles in arterial disease. Hypertension 26: 2–9, 1995.

    Article  Google Scholar 

  86. O’Rourke M.F.: Vascular mechanics in the clinic. Journal of biomechanics 36(5): 623–630, 2003.

    Article  Google Scholar 

  87. Peña E., Alastrué V., Laborda A., Martínez M.A., Doblaré M.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. Journal of biomechanics 43(5): 984–989, 2010.

    Article  Google Scholar 

  88. Peña E., Peña J.A., Doblaré M.: On the mullins effect and hysteresis of fibreed biological materials: A comparison between continuous and discontinuous damage models. International Journal of Solids and Structures 46(7–8): 1727–1735, 2009.

    Article  MATH  Google Scholar 

  89. Rachev A., Hayashi K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Annals of Biomedical Engineering 27(4): 459–468, 1999.

    Article  Google Scholar 

  90. Reuterwall O.: Über die Elästizität der Gefäßwände und die Methoden ihrer näheren Prü-fung. Acta med. scand Suppl 2.: 1–175, 1921.

    Google Scholar 

  91. Rhodin J.A.G.: Architecture of the vessel wall. In: R.M. Berne, N. Sperelakis (eds.) Vascular Smooth Muscle, The Cardiovascular System, vol. Vol 2 of Handbook of Physiology, Sect. 2: The Cardiovascular System., pp. 1–31. APS, Baltimore, 1979.

    Google Scholar 

  92. Roach M.R., Burton A.C.: The reason for the shape of the distensibility curves of arteries. Canadian journal of biochemistry and physiology 35(8): 681–690, 1957.

    Article  Google Scholar 

  93. Roach M.R., Burton A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35: 681–690, 1957.

    Article  Google Scholar 

  94. Rodriguez J., Goicolea J.M., Gabaldon F.: A volumetric model for growth of arterial walls with arbitrary geometry and loads. Journal of biomechanics 40(5): 961–971, 2007.

    Article  Google Scholar 

  95. Rodríguez J., Martufi G., Doblaré M., Finol E.: The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Annals of Biomedical Engineering 37(11): 2218–2221, 2009.

    Article  Google Scholar 

  96. Ronchetti I., Alessandrini A., Contri M., Fornieri C., Mori G., Quaglino D., Valdre U.: Study of elastic fibre organization by scanning force microscopy. Matrix Biol 17: 75–83, 1988.

    Article  Google Scholar 

  97. Sacks M.S.: Incorporation of experimentally-derived fibre orientation into a structural constitutive model for planar-collagenous tissues. Journal of Biomechanical Engineering-Transactions of the Asme 125(2): 280–287, 2003.

    Article  Google Scholar 

  98. Sacks M.S., Smith D.B., Hiester E.D.: A SALS device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25: 678–689 (1997)

    Article  Google Scholar 

  99. Sacks M.S., Sun W.: Multiaxial mechanical behavior of biological materials. Annual Review of Biomedical Engineering 5: 251–284, 2003.

    Article  Google Scholar 

  100. Samila Z., Carter S.: The effect of age on the unfolding of elastin lamellae and collagen fibres with stretch in human carotid arteries. Can. J. Physiol. Pharmacol. 59: 1050–1057, 1981.

    Article  Google Scholar 

  101. Schievink W.I., Roiter V.: Epidemiology of cervical artery dissection. Frontiers of neurology and neuroscience 20: 12–15, 2005.

    Article  Google Scholar 

  102. Scott S., Ferguson G.G., Roach M.R.: Comparison of the elastic properties of human intracranial arteries and aneurysms. Canadian journal of physiology and pharmacology 50(4): 328–332, 1972.

    Article  Google Scholar 

  103. Shapiro S., Endicott S., Province M., Pierce J., Campbell E.: Marked longevity of human lung parenchymal elastic fibres deduced from prevalence of d-aspartate and nuclear weaponsrelated radiocarbon. J Clin Invest 87: 1828–1834, 1991.

    Article  Google Scholar 

  104. Sherratt M.: Tissue elasticity and the ageing elastic fibre. AGE 31: 305–325, 2009.

    Article  Google Scholar 

  105. Shifren A., Mecham R.P.: The stumbling block in lung repair of emphysema: elastic fibre assembly. Proceedings of the American Thoracic Society 3(5): 428–433 (2006)

    Article  Google Scholar 

  106. Sidorov S.: Finite element modeling of human artery tissue with a nonlinear multimechanism inelastic material. Ph.D. thesis, U. of Pittsburgh (2006)

    Google Scholar 

  107. Simo J.C., Ju J.W.: Strain and stress-based continuum damage models- i. formulation. International Journal of Solids and Structures 23: 821–840, 1987.

    Article  MATH  Google Scholar 

  108. Spencer A.: Constitutive theory for strongly anisotropic solids. In: A. Spencer (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures, vol. 282. Springer (1984)

    Google Scholar 

  109. [109] Spencer A.J.M.: Theory of invariants. In: A.C. Eringen (ed.) Continuum Physics, vol. I, pp. 239–253. Academic Press, 1971.

    Google Scholar 

  110. Valentin A., Cardamone L., Baek S., Humphrey J.: Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6: 293–306, 2009.

    Article  Google Scholar 

  111. Wagenseil J., Mecham R.: Vascular extracellular matrix and arterial mechanics. Physiological Reviews 89(3): 957–989, 2009.

    Article  Google Scholar 

  112. Watton P., Ventikos Y., Holzapfel G.: Modelling the mechanical response of elastin for arterial tissue. J. Biomech. 42: 1320–1325, 2009.

    Article  Google Scholar 

  113. Weber T., Auer J., Eber B., O’Rourke M.F.: Relationship between reduced elasticity of extracardiac vessels and left main stem coronary artery disease. European heart journal 25(21): 1966–1967, 2004.

    Article  Google Scholar 

  114. Weber T., Auer J., O’Rourke M.F. Kvas E., Lassnig E., Lamm G., Stark N., Rammer M., Eber B.: Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. European heart journal 26(24): 2657–2663, 2005.

    Article  Google Scholar 

  115. Wiechert L., Metzke R., Wall W.A.: Modeling the mechanical behaviour of lung tissue at the micro-level. Mechanics of Biological and bioinspired materials in Journal of Engineering Mechanics 135(5): 434–438, 2009. DOI 10.1061/(ASCE)0733-9399(2009)135:5(434).

    Google Scholar 

  116. Wojak J.C., Dunlap D.C., Hargrave K.R., DeAlvare L.A., Culbertson H.S., Connors J. Jr.: Intracranial angioplasty and stenting: long-term results from a single center. AJNR Am. J. Neuroradiol. 27(9): 1882–1892, 2006.

    Google Scholar 

  117. Wolinsky H., Glagov S.: Structural basis for the static mechanical properties of the aortic media. Circulation research 14: 400–413, 1964.

    Article  Google Scholar 

  118. Wulandana R., Robertson A.: Use of a multi-mechanism constitutive model for inflation of cerebral arteries. In: First Joint BMES/EMBS Conference, vol. 1, p. 235. Atlanta, GA, 1999.

    Google Scholar 

  119. Wulandana R., Robertson A.M.: An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 4(4): 235–248, 2005.

    Article  Google Scholar 

  120. Zeng Z., Chung B.J., Durka M., Robertson A.M.: An in vitro device for evaluation of cellular response to flows found at the apex of arterial bifurcations. In: R. Rannacher, A. Sequeira (eds.) Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday. Springer-Verlag, New York, 2010.

    Google Scholar 

  121. Zipfel W.R., Williams R.M., Christie R., Nikitin A.Y., Hyman B.T., Webb W.W.: Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences of the United States of America 100(12): 7075–7080, 2003.

    Article  Google Scholar 

  122. Zollikofer C.L., Chain J., Salomonowitz E., Runge W., Bruehlmann W.F., Castaneda-Zuniga W.R., Amplatz K.: Percutaneous transluminal angioplasty of the aorta. light and electron microscopic observations in normal and atherosclerotic rabbits. Radiology 151(2): 355–363, 1984.

    Google Scholar 

  123. Zoumi A., Lu X., Kassab G., Tromberg B.: Imaging coronary artery microstructure using second harmonic and two-photon fluorescence microscopy. Biophys J 87: 2778–2786 (2004)

    Article  Google Scholar 

  124. Zulliger M., Stergiopulos N.: Structural strain energy function applied to the ageing of the human aorta. Journal of biomechanics 40(14): 3061–3069, 2007.

    Article  Google Scholar 

  125. Zulliger M.A., Rachev A., Stergiopulos N.: A constitutive formulation of arterial mechanics including vascular smooth muscle tone. AmJ Physiol-Heart C 287(3): H1335–H1343, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Robertson, A.M., Hill, M.R., Li, D. (2012). Structurally motivated damage models for arterial walls. Theory and application. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_6

Download citation

Publish with us

Policies and ethics