Skip to main content
Log in

A small angle light scattering device for planar connective tissue microstructural analysis

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The planar fibrous connective tissues of the body are composed of a dense extracellular network of collagen and elastin fibers embedded in a ground matrix, and thus can be thought of as biocomposites. Thus, the quantification of fiber architecture is an important step in developing an understanding of the mechanics of planar tissues in health and disease. We have used small angle light scattering (SALS) to map the gross fiber orientation of several soft membrane connective tissues. However, the device and analysis methods used in these studies required extensive manual intervention and were unsuitable for largescale fiber architectural mapping studies. We have developed an improved SALS device that allows for rapid data acquisition, automated high spatial resolution specimen positioning, and new analysis methods suitable for large-scale mapping studies. Extensive validation experiments revealed that the SALS device can accurately measure fiber orientation for up to a tissue thickness of at least 500 μm to an angular resolution of∼1o and a spatial resolution of±254 μm. To demonstrate the new device’s capabilities, structural measurements from porcine aortic valve leaflets are presented. Results indicate that the new SALS device provides an accurate method for rapid quantification of the gross fiber structure of planar connective tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, E., J. J. Cassidy, and A. Hiltner. Hierarchical structure of collagen and its relationship to the physical properties of tendon. In: Collagen, vol. 2, edited by M. E. Nimni. Boca Raton, FL: CRC Press, 1988, pp. 177–199.

    Google Scholar 

  2. Borch, J., P. R. Sundarajan, and R. H. Marchessault. Light scattering by cellulose. III. Morphology of wood.J. Polym. Sci. 9:313–329, 1971.

    CAS  Google Scholar 

  3. Bortolotti, U., A. Milano, and A. Mazzucco. Results of re-operation for primary tissue failure of porcine bioprostheses.J. Thorac. Cardiovasc. Surg. 90:564–569, 1985.

    PubMed  CAS  Google Scholar 

  4. Chaudhuri, S., H. Nguyen, R. M. Rangayyan, S. Walsh, and C. B. Frank. A Fourier domain directional filtering method for analysis of collagen alignment in ligaments.IEEE Trans. Biomed. Eng. BME-34:509–518, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Chien, J. C. W., and E. P. Chang. Small-angle light scattering of reconstituted collagen.Macromolecules 5:610–617, 1972.

    Article  CAS  Google Scholar 

  6. Chuong, C. J., M. S. Sacks, R. L. Johnson, and R. C. Reynolds. On the anisotropy of the diaphragmatic central tendon.J. Biomech. 24:563–576, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Cowley, J. M. Principles of image formation. In: Introduction to analytical electron microscopy, chap 1, edited by J. J. Hren, J. I. Goldstein, and D. C. Joy. New York: Plenum Press, 1979, pp. 1–42.

    Google Scholar 

  8. Ferrans, V. J., S. L. Hilbert, T. Tomita, M. Jones, and W. C. Robert. Morphology of collagen in bioprosthetic heart valves. In: Collagen, vol. 3, edited by M. E. Nimni. Boca Raton, FL: CRC Press, 1988, pp. 145–189.

    Google Scholar 

  9. Frank, C., B. MacFarlane, P. Edwards, R. Rangayyan, Z. Q. Liu, S. Walsh, and R. Bray. A quantitative analysis of matrix alignment in ligament scars: a comparison of movement versus immobilization in an immature rabbit model.J. Orthoped. Res. 9:219–227, 1991.

    Article  CAS  Google Scholar 

  10. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues New York: Springer Verlag, 1993, pp. 1–568.

    Google Scholar 

  11. Gabbay, S., P. Kadam, S. Factor, and T. K. Cheung. Do heart valves bioprostheses degenerate for metabolic or mechanical reasons?J. Thorac. Cardiovasc. Surg. 55:208–215, 1988.

    Google Scholar 

  12. Guinier, A. X-Ray Diffraction. San Francisco: W. H. Freeman and Company, 1963, pp. 1–378.

    Google Scholar 

  13. Halliday, D., and R. Resnick. Physics, New York: John Wiley and Sons, 1960, pp. 1–1214.

    Google Scholar 

  14. Hilbert, S. L., V. J. Ferrans, and W. M. Swanson. Optical methods for the nondestructive evaluation of collagen morphology in bioprosthetic heart valves.J. Biomed. Mater. Res. 20:1411–1421, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Hukins, D. W. L. Collagen orientation. In: Connective tissue matrix, edited by D. W. L. Hukins. Munich: Verlag, Chemie, 1984, pp. 211–240.

    Google Scholar 

  16. Kastelic, J., and E. Baer. Deformation of tendon collagen. In: The mechanical properties of biological materials, edited by J. F. Vincient, and J. D. Currey. Weinheim, U.K.: Society for Experimental Biology Symposium XXXIV, 1980, pp. 397–433.

    Google Scholar 

  17. Kronick, P. L., and P. R. Buechler. Fiber orientation in calfskin by laser light scattering or X-ray diffraction and quantitative relation to mechanical properties.J. Am. Leather Chem. Assoc. 81:221–229, 1986.

    CAS  Google Scholar 

  18. Kronick, P. L., M. S. Sacks, and M. Dahms. Vertical fiber defect quantified by small angle light scattering.Connect. Tiss. Res. 27:1–13, 1991.

    CAS  Google Scholar 

  19. Liu, Z. Q., R. M. Rangayyan, and C. B. Frank. Statistical analysis of collagen alignment in ligaments by scale-space analysis.IEEE Trans. Biomed. Eng. 38:580–587, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Marshall, G. E. Gaussian laser beam diameters and divergence. In: Optical scanning, edited by G. E. Marshall. New York: Marcel Dekker, 1991, pp. 1–11.

    Google Scholar 

  21. Milano, A., U. Bortolotti, and E. Talenti. Calcific degeneration as the main cause of porcine bioprostheses.Am J. Cardiol. 53:1066–1070, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Moritani, M., N. Hayashi, A. Utsuo, and H. Kawai. Light-scattering patterns from collagen films in relation to the texture of a random assembly of anisotropic rods in three dimensions.Polym. J. 2:74–87, 1971.

    Article  Google Scholar 

  23. Muggli, R., and R. Marton. Light scattering by cellulose. V. Anisotropy scattering by wood fibers.J. Polym. Sci. 36:121–139, 1971.

    Google Scholar 

  24. Otano, S. E., M. S. Sacks, and T. I. Malinin. Mechanical Behavior of Human Dura Mater, vol. 29.Proceedings in the 1995 Bioengineering Conference, Beaver Creek, CO, 1995, pp. 329–330.

  25. Purslow, P. P., A. Bigi, A. Ripamonti, and N. Roveri. Collagen fibre reorientation around a crack in biaxially stretched materials.Int. J. Macromol. 6:21–25, 1984.

    Article  CAS  Google Scholar 

  26. Raman, C. V., and M. R. Bhat. The structure and optical behavior of some natural and synthetic fibers.Proc. Indian Acad. Sci. A40:109–116, 1954.

    Google Scholar 

  27. Sacks, M. S., Focus on materials with scattered light.Res. Dev. 30:73–78, 1988.

    Google Scholar 

  28. Sacks, M. S., and C. J. Chuong. Characterization of collagen fiber architecture in the canine central tendon.J. Biomech. Eng. 114:183–190, 1992.

    PubMed  CAS  Google Scholar 

  29. Sacks, M. S., C. J. Chuong, and R. More. Collagen fiber architecture of bovine pericardium.ASAIO 40:M632-M637, 1994.

    Article  CAS  Google Scholar 

  30. Sacks, M. S., M. S. Chuong, W. M. Petroll, M. Kwan, and C. Halberstatd. Collagen fiber architecture of a cultured tissue.J. Biomech. Eng. 119:124–127, 1997.

    PubMed  CAS  Google Scholar 

  31. Sasaki, N., and S. Odajima. Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique.J. Biomech. 29:655–658, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Schoen, F. J., Cardiac valve prostheses: review of clinical status and contemporary biomaterial issuesJ. Biomed. Mater. Res. 21:91–117, 1987.

    PubMed  CAS  Google Scholar 

  33. Stein, R. S., P. Erhardt, J. J. van Aartsen, and S. Clough. Theory of light scattering from oriented and fiber structures.J. Polym. Sci. 13:1–35, 1966.

    Google Scholar 

  34. Stein, R. S., and P. R. Wilson. Scattering of light by polymer films possessing correlated orientation fluctuation.J. Appl. Phys. 33:1914–1922, 1962.

    Article  CAS  Google Scholar 

  35. Whittaker, P., and P. B. Canham. Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy.Matrix 11:56–62, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacks, M.S., Smith, D.B. & Hiester, E.D. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 25, 678–689 (1997). https://doi.org/10.1007/BF02684845

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684845

Keywords

Navigation