Skip to main content
Log in

Characterisation of structural changes in the arterial elastic matrix by a new fractal feature: directional fractal curve

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A new fractal feature, the Directional Fractal Curve (DFC), defined over an arc of 180° and composed of 90 fractal dimensions determined at intervals of arc of 2°, is developed to account for the anisotropic property of a fractal texture. The DFC algorithm is first applied to two images with different textural patterns one without directional preference and one with a well-organised texture. The DFC of these images shows different patterns. The technique is then applied to quantify the structure of the elastic texture in the arterial wall where the elastic network was imaged by scanning electron microscopy following selective tissue digestion. The results suggest: (i) that images of the elastin matrix of the arterial wall exhibit fractal properties with directional preference, (ii) the DFC gives quantitative parameters which allow characterisation of structural changes in the elastin matrix of the arterial wall in terms of disorganisation and fragmentation of elastin fibres—conditions which are associated with medial degeneration due to normal ageing or presence of arterial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett, M. L. (1991): ‘Comparison of methods for measuring fractal dimesions’.Australas. Phys. Eng. Sci. Med.,14 (3), pp. 146–152

    MathSciNet  Google Scholar 

  • Caldwell, C. B., Stapleton, S. J., Holdsworth, D. W., Jong, R. A., Weiser, W. J., Cooke, G., andYaffe, M. J. (1990): ‘Characterization of mammographic parenchymal pattern by fractal dimension’,Phys. Med. Biol.,35 (20), pp. 235–247

    Article  Google Scholar 

  • Chen, Chi-Chang, Doponte, S. J., andFox, M. D. (1989): ‘Fractal feature analysis and classification”,IEEE Trans. Med. Imaging,8 (2), pp. 133–142

    Article  Google Scholar 

  • Dennis, T. J., andDesspiris, N. G. (1989): ‘Fractal modelling in image texture analysis’,IEEE Proc. F,136, (5), pp. 227–235

    Google Scholar 

  • Hosoda, Y., Kawano, K., Yamasawa, F., Ishii, T., Shibata, T., andInayama, S. (1984): ‘Age-dependent changes of collagen and elastin content in human aorta and pulmonary artery’,J. Vasc. Diseases,35, pp. 615–621

    Google Scholar 

  • Jaing, C. F., Avolio, A. P., andCeller, B. G. (1995): ‘Quantification of the elastin lamellar structure in histological sections of the arterial wall by image analysis’,J. Comput.-Assist. Microsc.,7 (1), pp. 47–55

    Google Scholar 

  • Jiang, C. F., andAvolio, A. P. (1992): ‘Study of age-related changes in the elastic matrix of the human aorta using selective tissue digestion and scanning electron microscopy’,Proc. 1992 Int. Symp. Biomedical Engineering in the 21st Century, Tapei, pp. 349–352

  • John, R., andThomas, J. (1972): ‘Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages’,Biochem. J.,127, pp. 261–269

    Google Scholar 

  • Keller, J. M., Chen, S., andCrownover, R. M. (1989): ‘Texture description and segmentation through fractal geometry’,Comput. Vision, Graphics, Image Process,45, pp. 150–166

    Article  Google Scholar 

  • Levenberg, K. (1944): ‘A method for the solution of certain problems in least-squares’,Quart. Appl. Math.,2, pp. 164–168

    MathSciNet  MATH  Google Scholar 

  • Lundahl, T., Ohley, W. J., Kay, S. M., andSiffert, R. (1986): ‘Frarctional Brownian motion: a maximum likelihood estimator and its application to image texture’,IEEE Trans. Med. Imaging,MI-5 (3), pp. 152–161

    Article  Google Scholar 

  • Mandelbrot, B. B. (1982): ‘The fractal geometry of nature’ (W. H. Freeman and Co., New York)

    MATH  Google Scholar 

  • Marguardt, D. (1963): ‘An algorithm for least-squareds estimation of nonlinear parameters’,SIAM J. Appl. Math.,11, pp. 431–441

    Article  Google Scholar 

  • Milch, R. A. (1965): ‘Matrix properties of the aging arterial wall’,Monographs in Surgical Sciences,2 (4), pp. 261–351

    Google Scholar 

  • Nakashima, Y., Shiokawa, Y., andSueishi, K. (1990): ‘Alterations of elastic architecture in human aortic dissection aneurysm’,Laboratory Investigation,62 (6), pp. 751–760

    Google Scholar 

  • Nakashima, Y., andSueishi, K. (1992): ‘Alteration of elastic architecture in the rat aorta implies the pathogenesis of aortic dissecting aneurysm’,Am. J. Path.,140 (4), pp. 959–969

    Google Scholar 

  • Nejjar, I., Pieraggi, M. T., Thiers, J. C., andBouissou, H. (1990): ‘Age-related changes in the elastic tissue of the human thoracic aorta’,Atherosclerosis,80, pp. 199–208

    Article  Google Scholar 

  • Partridge, S. M. (1979): ‘Chemistry and structure of the walls of the large arteries’in Stehbens, W. E. (Eds.): ‘Hemodynamics and the blood vessel wall’ (Charles C. Thomas, London)

    Google Scholar 

  • Peleg, S., Naor, J., Hartley, R., andAvnir, D. (1984): ‘Multiple resolution texture analysis and classification’,IEEE Trans. PAMI,6 (4), pp. 518–523

    Google Scholar 

  • Pentland, A. P. (1984): ‘Fractal-based description of natural scenes’,IEEE Trans. PAMI,6 (6), pp. 661–674

    Google Scholar 

  • Pentland, A. P. (1986): ‘Shading into texture’,Artif. Intell.,29, pp. 147–170

    Article  MathSciNet  MATH  Google Scholar 

  • Shigemi, U. (1972): ‘Histological and histochemical studies on the aging process and atherosclerosis of the human aorta’,J. Fukuoka Med. Assoc. 63 (11), pp. 432–450

    Google Scholar 

  • Spina, M., Garbisa, S., Hinnie, J., Hunter, J. C., andSerafini-Fracassini, A. (1983): ‘Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta’,Arteriosclerosis,3 (1), pp. 64–76

    Google Scholar 

  • Taylor, R. I., andLewis, P. H. (1994): ‘2D shape signature based on fractal measurements’,IEEE-Proc.-Vis. Image Signal Process.,141 (6), pp. 422–430

    Article  Google Scholar 

  • Toda, T., Tsuda, N., Nishimori, I., Leszczynski, D. E., andKummerow, A. (1980): ‘Morphometrical analysis of the aging process in human arteries and aorta’,Acta Anat.,106, pp. 35–44

    Article  Google Scholar 

  • Tuttle, R. S. (1966): ‘Age-related changes in the sensitivity of rat aortic strips to norepimephrine and associated chemical and structural alterations’,J. Gerontol.,21, pp. 516

    Google Scholar 

  • West, B. J. (1990): ‘Physiology in fractal dimensions: error tolerance’,Ann. Biomed. Eng.,18, pp. 135–149

    Article  Google Scholar 

  • Wolinsky, H., andGlagov, S. (1967): ‘A lamellar unit of aortic medial structure and function in mammals’,Circ. Res.,XX, pp. 99–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C.F., Avolio, A.P. Characterisation of structural changes in the arterial elastic matrix by a new fractal feature: directional fractal curve. Med. Biol. Eng. Comput. 35, 246–252 (1997). https://doi.org/10.1007/BF02530045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530045

Keywords

Navigation