Skip to main content

Phytohormones in Salinity Tolerance: Ethylene and Gibberellins Cross Talk

  • Chapter
  • First Online:
Phytohormones and Abiotic Stress Tolerance in Plants

Abstract

Plants are severely affected by salinity due to its high magnitude of adverse impacts and worldwide distribution. Phytohormones are thought to be the most important endogenous substances involved in the mechanisms of tolerance or susceptibility of plants to salinity stress. The role of phytohormones under salinity stress is critical in modulating physiological responses that will eventually lead to adaptation to an unfavorable environment. Ethylene and gibberellins (GAs) are involved in mitigating the adverse effects of salinity stress by initiating a set of defense response or increasing plants’ growth. However, both these phytohormones influence each other’s action. On the one hand, GA is known to increase ethylene synthesis, and on the other hand, its signaling is itself affected by ethylene, and therefore, this interaction opens a cross talk between them. The present study focuses on both individual and interactive effect of the two in salinity tolerance to find out whether they have independent action or their action is dependent on each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas W, Ashraf M, Akram NA (2010) Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hortic 125:188–195

    Article  CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego, USA

    Google Scholar 

  • Achard P, Vriezen WH, van der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:612816–612825

    Article  CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D et al (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104:6484–6489

    Article  PubMed  CAS  Google Scholar 

  • Afzal I, Basra SMA, Iqbal A (2005) The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 19:4119–4131

    Article  CAS  Google Scholar 

  • Aldesuquy HS, Gaber AM (1993) Effect of growth regulators on Vicia faba plants irrigated by seawater, leaf area, pigment content and photosynthetic activity. Biol Plant 35:519–527

    Article  CAS  Google Scholar 

  • Aldesuquy HS, Ibrahim AH (2001) Interactive effect of seawater and growth bio-regulators on water relations, absicisic acid concentration, and yield of wheat plants. J Agron Crop Sci 187:185–193

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63:55–62

    Article  CAS  Google Scholar 

  • Amzallag GN, Lerner H, Poljakoff-Mayber A (1992) Interaction between mineral nutrients, cytokinins and gibberellic acid during growth of sorghum at higher NaCl salinity. J Exp Bot 43:81–87

    Article  CAS  Google Scholar 

  • Ashraf MY, Azmi AR, Khan AH, Ala SA (1994) Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). Acta Physiol Plant 16:185–191

    CAS  Google Scholar 

  • Basalah MO, Mohammad S (1999) Effect of salinity and plant growth regulators on seed germination of Medicago sativa L. Pak J Biol Sci 2:651–653

    Article  Google Scholar 

  • Bialecka B, Kepczynski J (2009) Effect of ethephon and gibberellin A3 on Amaranthus caudatus seed germination and α- and β-amylase activity under salinity stress. Acta Biol Cracov Ser Bot 51:119–125

    Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    Article  CAS  Google Scholar 

  • Calvo AP, Nicolás C, Nicolás G, Rodríguez D (2004) Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant 120:623–630

    Article  PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    Article  PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  PubMed  CAS  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response. Plant Signal Behav 3:761–763

    Article  PubMed  Google Scholar 

  • Chakraborti N, Mukherji S (2003) Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biol Plant 46:63–66

    Article  Google Scholar 

  • Chen YF, Etheridge N, Schaller E (2005) Ethylene signal transduction. Ann Bot (Lond) 95:901–915

    Article  CAS  Google Scholar 

  • De Grauwe L, Dugardeyn J, Van Der Straeten D (2008) Novel mechanisms of ethylene-gibberellin crosstalk revealed by the gai eto2-1 double mutant. Plant Signal Behav 3:1113–1115

    Article  PubMed  Google Scholar 

  • De Grauwe L, Vriezen WH, Bertrand S, Phillips A, Vidal AM, Hedden P, Van Der Straeten D (2007) Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta 226:485–498

    Article  PubMed  CAS  Google Scholar 

  • Dhingra HR, Varghese TM (1985) Effect of growth regulators on the in vitro germination and tube growth of maize (Zea mays L.) pollen from plants raised under sodium chloride salinity. New Phytol 100:563–569

    Article  CAS  Google Scholar 

  • Dill A, Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    PubMed  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Davies WJ (1996) The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. Plant Cell Environ 19:1047–1056

    Article  CAS  Google Scholar 

  • Dugardeyn J, Vandenbussche F, Van Der Straeten D (2008) To grow or not to grow: what can we learn on ethylene–gibberellin cross-talk by in silico gene expression analysis? J Exp Bot 59:1–16

    Article  PubMed  CAS  Google Scholar 

  • Farhoudi R, Saeedipour S (2011) Effect of exogenous abscisic acid on antioxidant activity and salt tolerance in rapeseed (Brassica napus) cultivars. Res Crops 12:122–130

    Google Scholar 

  • Foo E, Ross JJ, Davies NW, Reid JB, Weller JL (2006) A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46:911–921

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–442

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Ho LH, Clifton R et al (2008) The absence of alternative oxidase 1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  PubMed  CAS  Google Scholar 

  • Gomez CA, Arbona V, Jacas J, PrimoMillo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Article  CAS  Google Scholar 

  • Gorham JE, McDonnel E, Budrewicz JRGW (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36:1021–1031

    Article  CAS  Google Scholar 

  • Gul B, Khan MA, Weber DJ (2000) Alleviation salinity and darken forced dormancy in Allenrolfea occidentalis seeds under various thermo periods. Aust J Bot 48:745–752

    Article  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN (2000) The role of gibberellin in the control of growth and flowering in Matthiola incana. Physiol Plantarium 109:97–105

    Article  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowita EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  PubMed  CAS  Google Scholar 

  • Hussain K, Nawaz K, Majeed A, Khan F, Lin F, Ghani A, Raza G, Afghan S, Zia-ul-Hussnain S, Ali K, Shahazad A (2010) Alleviation of salinity effects by exogenous applications of salicylic acid in pearl millet (Pennisetum glaucum (L.) R. Br.) seedlings. Afr J Biotechnol 9:8602–8607

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2010) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Env Exp Bot http://dx.doi.org/10.1016/j.envexpbot.2010.06.002

  • Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr Sci 100:110

    Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48:81–189

    Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Elsevier Trends J 2:22–28

    Google Scholar 

  • Jung S, Kim JS, Cho KY, Tae GS, Kang BG (2000) Antioxidant responses of cucumber (Cucumis sativus) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. Plant Sci 153:145–154

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Seo YS, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC (2010) The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152:1674–1692

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  PubMed  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    Article  CAS  Google Scholar 

  • Karssen CM, Zagórsky S, Kepczynski J, Groot SPC (1989) Key role for endogenous gibberellins in the control of seed germination. Ann Bot 63:71–80

    CAS  Google Scholar 

  • Kaya C, Tuna AL, Yokas I (2009) The role of plant hormones in plants under salinity stress. Book Salinity Water Stress 44:45–50

    Article  Google Scholar 

  • Kefu Z, Munns R, King RW (1991) Abscisic-acid levels in NaCl-treated barley, cotton and saltbush. Aust J Plant Physiol 18:17–24

    Article  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Khan AA, Huang XL (1988) Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic acid in lettuce seeds exposed to salinity stress. Plant Physiol 87:847–852

    Article  PubMed  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect Linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132

    Article  CAS  Google Scholar 

  • Khan AA, Akbar M, Seshu DV (1987) Ethylene as an indicator of salt tolerance in rice. Crop Sci 27:1242–1248

    Article  Google Scholar 

  • Koornneef M, Karssen CM (1994) Seed dormancy and germination. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory, New York, pp 313–334

    Google Scholar 

  • Koyro HW, Geissler N, Hussin S, Debez A, Huchzermeyer B (2008) Strategies of halophytes to survive in a salty environment. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House, New Delhi, pp 83–104

    Google Scholar 

  • Kramell R, Atzorn R, Schneider G, Miersch O, Bruckner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J Plant Growth Regul 14:29–36

    Article  CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the ‘oxylipin signature’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–187

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Singh B (1996) Effect of plant hormones on growth and yield of wheat irrigated with saline water. Ann Agric Res 17:209–212

    Google Scholar 

  • Lehmann J, Atzorn R, Bruckner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    Article  CAS  Google Scholar 

  • Li Y, Su X, Zhang B, Huang Q, Zhang X, Huang R (2008) Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiol 29:273–279

    Article  PubMed  CAS  Google Scholar 

  • Li S, Xu C, Yang Y, Xia G (2010) Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell Environ 33:117–129

    Article  PubMed  CAS  Google Scholar 

  • Lima-Costa ME, Ferreira S, Duarte A, Ferreira AL (2010) Alleviation of salt stress using exogenous proline on a citrus cell line. Acta Hortic 868:109–112

    CAS  Google Scholar 

  • Ling T, Zhang B, Cui W, Wu M, Lin J, Zhou W, Huang J, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177:331–340

    Article  CAS  Google Scholar 

  • Liu YG, Wu RR, Wan Q, Xie GQ, Bi YR (2007) Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-invomagomelved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol 48:511–522

    Article  PubMed  CAS  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell cycle induction in deepwater rice. Plant Physiol 119:21–29

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Lana W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Curr Opin Plant Biol 12:339–346

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Ethylene production by leaves of rice (Oryza sativa L.) in relation to salinity tolerance and exogenous putrescine application. Plant Sci 116:15–25

    Article  CAS  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium and salt stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  PubMed  CAS  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effect on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell F, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Mohammed AHMA (2007) Physiological aspects of mungbean plant (Vigna radiata L. Wilczek) in response to salt stress and gibberellic acid treatment. Res J Agr Biol Sci 3:200–213

    CAS  Google Scholar 

  • Moons A, Prisen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt-inducible transcripts in rice roots. Plant Cell 92:243–259

    Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SSM, Ansari R, Kuawada AN (1982) Responses of salt stressed wheat seedlings to kinetin. Plant Sci Lett 26:279–283

    Article  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011a) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011b) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  PubMed  CAS  Google Scholar 

  • O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P, Klee HJ et al (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signalling biosynthesis, catabolism, and response pathways. Plant Cell 14(suppl):S61–S80

    PubMed  CAS  Google Scholar 

  • Palma F, Lluch C, Iribarne C, Garcia-Garrida JM, Garcia NAT (2009) Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul 58:307–331

    Article  CAS  Google Scholar 

  • Parasher A, Varma SK (1988) Effect of pre-sowing seed soking in gibberellic acid on growth of wheat (Triticum aestivum L.) under saline conditions. Indian J Biol Sci 26:473–475

    CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Domenech EM, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Pérez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source–sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  • Poljakoff-Mayber A, Lerner HR (1994) Plants in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pp 65–96

    Google Scholar 

  • Pospíšilová J (2003) Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41:49–56

    Article  Google Scholar 

  • Prakash L, Prathapasenan G (1990) NaCl and gibberellic acid-induced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice (Oryza sativa). Ann Bot 365:251–257

    Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Saibo NJM, Vriezen WH, Beemster GTS, Van der Straeten D (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Saimbhi MS (1993) Growth regulators on vegetable crops. In: Chadha KL, Kallo G (eds) Advances in horticulture. Malhotra, New Delhi, pp 619–642

    Google Scholar 

  • Sastry EVD, Shekhawa KS (2001) Alleviatory effect of GA3 on the effect of salt at seedling stage in wheat (Triticum aestivum). Indian J Agr Res 35:226–231

    Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and physiology and molecular actions of jasmonates. Ann Rev Plant Physiol Plant Mol Biol 44:569–586

    Article  CAS  Google Scholar 

  • Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis. Plants Mol Cells 30:271–277

    Article  CAS  Google Scholar 

  • Shah SH (2007) Effects of salt stress on mustard as affected by gibberellic acid application. Gen Appl Plant Physiol 33:97–106

    CAS  Google Scholar 

  • Sharp R, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    Article  CAS  Google Scholar 

  • Singha S, Choudhuri MA (1990) Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochem Physiol Pflan 186:69–74

    CAS  Google Scholar 

  • Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice (Oryza sativa L.) is regulated by ethylene, gibberellin and abscisic acid. Plant Physiol 139:1–9

    Article  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2010) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33(877):886

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–507

    Article  PubMed  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 1(Special issue):2–9

    Article  CAS  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D (2007) Ethylene induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot 58:4269–4281

    Article  PubMed  CAS  Google Scholar 

  • Velitcukova M, Fedina I (1998) Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35:89–97

    Article  Google Scholar 

  • Vettakkorumakankav NA (1999) Crucial role for gibberellin in stress protecting of plants. Plant Cell Physiol 40:542–548

    CAS  Google Scholar 

  • Vriezen WH, Achard P, Harberd NP, Van Der Straeten D (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J 37:505–516

    Article  PubMed  CAS  Google Scholar 

  • Walker MA, Dumbroff EB (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. ZPfl anzenphysiol 101:461–470

    CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang HH, Liang XL, Wan Q, Wang XM, Bi YR (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Jang SJ, Park KY (2010) Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol Cells 30:37–39

    Article  PubMed  CAS  Google Scholar 

  • Wolf O, Jeschke WD, Hartung W (1990) Long-distance transport of abscisic-acid in NaCl-treated intact plants of Lupinus albus. J Exp Bot 41:593–600

    Article  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Lou T, Zhao N, Gao Y, Dong L, Jiang D, Shen W, Huang L, Wang R (2011) Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiol Plant 33:1173–1183

    Article  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zua YG, Tang ZH (2010) Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot. doi:10.1016/j.envexpbot.2010.08.006

  • Yeo AR (2007) Salinity. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell, Oxford, pp 340–365

    Chapter  Google Scholar 

  • Zahra S, Amin B, Mohamad Ali VS, Mehdi Y (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and praline contents under salinity stress (NaCl). J Biophys Struct Biol 2:35–41

    Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  PubMed  CAS  Google Scholar 

  • Zhu JH, Verslues PE, Zheng XW et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plant. Proc Natl Acad Sci USA 102:9966–9971

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Fu X, Koo YD et al (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27:5214–5224

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noushina Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Iqbal, N., Masood, A., Khan, N.A. (2012). Phytohormones in Salinity Tolerance: Ethylene and Gibberellins Cross Talk. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_3

Download citation

Publish with us

Policies and ethics