Skip to main content
Log in

Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity stress affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of salinity, different strategies of the application of nutrients with plant hormones are being adopted. The present study was carried out with an aim to find out whether application of calcium chloride (CaCl2) and gibberellic acid (GA3) could alleviate the detrimental effects of salinity stress on plant metabolism. Fifteen days old plants were supplied with (1) 0 mM NaCl + 0 mg CaCl2 kg−1 sand + 0 M GA3 (control, T0); (2) 0 mM NaCl + 10 mg CaCl2 kg−1 sand + 0 M GA3 (T1); (3) 0 mM NaCl + 0 mg CaCl2 kg−1 sand + 10−6 M GA3 (T2); (4) 150 mM NaCl + 0 mg CaCl2 kg−1 sand + 0 M GA3 (T3); (5) 150 mM NaCl + 10 mg CaCl2 kg−1 sand + 0 M GA3 (T4); (6) 150 mM NaCl + 0 mg CaCl2 kg−1 sand + 10−6 M GA3 (T5); (7) 150 mM NaCl + 10 mg CaCl2 kg−1 sand + 10−6 M GA3 (T6). To assess the response of the crop to NaCl, CaCl2 and GA3, plants were uprooted randomly at 60 days after sowing. The presence of NaCl in the growth medium decreased all the growth and physio-biochemical parameters, except electrolyte leakage, proline (Pro) and glycine betaine (GB) content, thiobarbituric acid reactive substances (TBARS), H2O2 content, activities of superoxide dismutase (SOD) and catalase (CAT) and leaf Na content, which exhibited an increase of 37.6, 29.3, 366.9, 107.5, 59.1, 17.1, 28.4 and 255.2%, respectively, compared to the control plants. However, application of CaCl2 in combination with GA3 appears to confer greater osmoprotection by the additive role with NaCl in Pro and GB accumulation. Although the activities of antioxidant enzymes (SOD, CAT and POX) were increased by salt stress, the combined application of CaCl2 and GA3 to salt-stressed plants further enhanced the activities of these enzymes by 25.1, 6.7 and 47.8%, respectively, compared to plants grown with NaCl alone. The present study showed that application of CaCl2 and GA3 alone as well as in combination mitigated the adverse effect of salinity, but combined application of these treatments proved more effective in alleviating the adverse effects of NaCl stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CA:

Carbonic anhydrase

CAT:

Catalase

GB:

Glycine betaine

g s :

Stomatal conductance

LRWC:

Leaf relative water content

NR:

Nitrate reductase

P N :

Net photosynthetic rate

POX:

Peroxidase

Pro:

Proline

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

LA:

Leaf area per plant

SDW:

Shoot dry weight per plant

RDW:

Root dry weight per plant

References

  • Afroz S, Mohammad F, Hayat S, Siddiqui MH (2005) Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turk J Biol 29:233–236

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bates LS, Walden RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer JW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139

    CAS  PubMed  Google Scholar 

  • Cabañero FJ, Martinez V, Carvajal M (2004) Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant Sci 166:443–450

    Article  Google Scholar 

  • Colmer TD, Fan TWM, Higashi RM, Lauchli A (1994) Interactions of Ca2+ and NaCl stress on the ion relations and intracellular pH of Sorghum bicolor root tips: an in vivo 31P-NMR study. J Exp Bot 45:1037–1044

    Article  CAS  Google Scholar 

  • Cramer GR (1992) Kinetics of maize leaf elongation. II. Response of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities. J Exp Bot 43:857–864

    Article  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Easterwood GW (2002) Calcium’s role in plant nutrition. Fluid J 10:16–19

    Google Scholar 

  • Eastin EF (1978) Total nitrogen determination for plant material containing nitrate. Anal Biochem 85:591–594

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1962) Mutual effects of ions on their absorption by plants. Agrochimica 6:293–322

    Google Scholar 

  • FAO (2000) Production year book. Food and Agriculture Organization of the United Nations, Rome

  • Flores P, Botella MA, Martinez V, Cerda A (2002) Response to salinity of tomato seedlings with a split-root system: nitrate uptake and reduction. J Plant Nutr 25:177–187

    Article  CAS  Google Scholar 

  • Garg BK, Kathju S, Vyas SP, Lahiri AN (1997) Alleviation of sodium chloride induced inhibition of growth and nitrogen metabolism of clusterbean by calcium. Biol Plant 39:395–401

    Article  CAS  Google Scholar 

  • Georgios A, Dimou M, Flemetakis E, Plati F, Katinakis P, Drossopoulos JB (2004) Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa. Plant Physiol Biochem 42:181–186

    Article  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessaraki M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 203–226

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Fariduddin Q, Azam ZM (2001) Carbonic anhydrase, photosynthesis and seed yield in mustard plants treated with phytohormones. Photosynthetica 39:111–114

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  CAS  PubMed  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hort 93:65–74

    Article  CAS  Google Scholar 

  • Khan NA, Ansari HR, Mobin M (1996) Effect of gibberellic acid and nitrogen on carbonic anhydrase activity and mustard biomass. Biol Plant 38:601–603

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Khan MMA, Naeem M (2007) Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J Agric Sci 3:685–695

    Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    Article  CAS  PubMed  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76–89

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effect of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16:39–46

    Article  CAS  Google Scholar 

  • Moll C, Jones RL (1981) Calcium and gibberellin-induced elongation of lettuce hypocotyl sections. Planta 152:450–456

    Article  CAS  Google Scholar 

  • Nathawat NS, Kuhad MS, Goswami CL, Patel AL, Kumar R (2005) Nitrogen-metabolizing enzymes: effect of nitrogen sources and saline irrigation. J Plant Nutr 28:1089–1101

    Article  CAS  Google Scholar 

  • Peltzer D, Dreyer E, Polle A (2002) Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiol Biochem 40:141–150

    Article  CAS  Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632

    Article  CAS  Google Scholar 

  • Roth-Bejerano N, Lips SH (1970) Hormonal regulation of nitrate reductase activity in leaves. New Phytol 69:165–169

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107:631–638

    CAS  PubMed  Google Scholar 

  • Seeman JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    Article  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN (2009) Morphological and physio-biochemical characterization of Brassica juncea L. Czern. & Coss. genotypes under salt stress. J Plant Interact 4:67–80

    Article  CAS  Google Scholar 

  • Singh U, Ram PC, Singh BB, Chaturvedi GS (2005) Effect of GA3 on distribution of N, P, K+, Na+ and Cl in embryo-axis and cotyledons of urdbean (Vigna mungo L.) under salinity. Ann Agric Biol Res 10:187–194

    Google Scholar 

  • Singh MP, Singh DK, Rai M (2007) Assessment of growth, physiological and biochemical parameters and activities of antioxidative enzymes in salinity tolerant and sensitive basmati rice varieties. J Agron Crop Sci 193:398–412

    Article  CAS  Google Scholar 

  • Soussi M, Ocaña A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Sumner ME (1993) Sodic soils: new perspectives. Aust J Soil Res 31:683–750

    Article  Google Scholar 

  • Tanimoto E (1990) Gibberellin requirement for the normal growth of roots. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, New York, pp 229–240

    Google Scholar 

  • Thiel G, Blatt MR (1991) The mechanism of ion permeation through K+ channels of stomatal guard cells: voltage-dependent block by Na+. J Plant Physiol 139:326–334

    Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461

    CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wenxue W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity-induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191

    Article  Google Scholar 

  • Yamasaki S, Dillenburg LC (1999) Measurements of leaf relative water content in Araucaria angustifolia. R Bras Fisiol Veg 11:69–75

    Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99:415–421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nasir Khan.

Additional information

Communicated by M. Rapacz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasir Khan, M., Siddiqui, M.H., Mohammad, F. et al. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32, 121–132 (2010). https://doi.org/10.1007/s11738-009-0387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0387-z

Keywords

Navigation