Skip to main content
Log in

Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum

  • Published:
Molecules and Cells

Abstract

Reactive oxygen species (ROS), such as H2O2, are important plant cell signaling molecules involved in responses to biotic and abiotic stresses and in developmental and physiological processes. Despite the well-known physiological functions of ethylene production and stress signaling via ROS during stresses, whether ethylene acts alone or in conjunction with ROS has not yet been fully elucidated. Therefore, we investigated the relationship between ethylene production and ROS accumulation during the response to abiotic stress. We used three independent transgenic tobacco lines, CAS-AS-2, −3 and −4, in which an antisense transcript of the senescence-related ACC synthase (ACS) gene from carnation flower (CARACC, Gen-Bank accession No. M66619) was expressed heterologously. Biphasic ethylene biosynthesis was reduced significantly in these transgenic plants, with or without H2O2 treatment. These plants exhibited significantly reduced H2O2-induced gene-specific expression of ACS members, which were regulated in a time-dependent manner. The higher levels of NtACS1 expression in wild-type plants led to a second peak in ethylene production, which resulted in a more severe level of necrosis and cell death, as determined by trypan blue staining. In the transgenic lines, upregulated transcription of CAB, POR1 and RbcS resulted in increased photosynthetic performance following salt stress. This stress tolerance of H2O2-treated transgenic plants resulted from reduced ethylene biosynthesis, which decreased ROS accumulation via increased gene expression and activity of ROS-detoxifying enzymes, including MnSOD, CuZnSOD, and catalase. Therefore, it is suggested that ethylene plays a potentially critical role as an amplifier for ROS accumulation, implying a synergistic effect between biosynthesis of ROS and ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, A.C., Lapidot, M., Culver, J.N., and Fluhr, R. (2001). An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol. 126, 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460–3479.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Apostol, I., Heinstein, P.F., and Low, P.S. (1989). Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 90, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270, 2593–2604.

    Article  CAS  PubMed  Google Scholar 

  • Bleecker, A.B., and Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Castagna, A., and Ranieri, A. (2009). Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ. Pollut. 157, 1461–1469.

    Article  CAS  PubMed  Google Scholar 

  • Castagna, A., Ederli, L., Pasqualini, S., Mensuali-Sodi, A., Baldan, B., Donnini, S., and Ranieri, A. (2007). The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage. New Phytol. 174, 342–356.

    Article  CAS  PubMed  Google Scholar 

  • Chae, H.S., and Kieber, J.J. (2005). Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Chae, H.S., Faure, F., and Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545–559.

    Article  CAS  PubMed  Google Scholar 

  • Chen, N., Goodwin, P.H., and Hsiang, T. (2003). The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J. Exp. Bot. 54, 2449–2456.

    Article  CAS  PubMed  Google Scholar 

  • Chung, K.M., Igari, K., Uchida, N., and Tasaka, M. (2008). New perspectives on plant defense responses through modulation of Developmental Pathways. Mol. Cells 26, 107–112.

    CAS  PubMed  Google Scholar 

  • Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjärvi, J., Inzé, D., and Van Breusegem, F. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J. 33, 621–632.

    Article  CAS  PubMed  Google Scholar 

  • Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268–281.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, A.J., Yakimova, E.T., Kapchina, V.M., and Woltering, E.J. (2002). A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214, 537–545.

    Article  Google Scholar 

  • Desikan, R., Hancock, J.T., Bright, J., Harrison, J., Weir, I., Hooley, R., and Neill, S.J. (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 137, 831–834.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J.T., and Neill, S.J. (2006). Ethyleneinduced stomatal closure in Arabidopsis occurs via AtrbohFmediated hydrogen peroxide synthesis. Plant J. 47, 907–916.

    Article  CAS  PubMed  Google Scholar 

  • Díaz, J., ten Have, A., and van Kan, J.A. (2002). The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129. 1341–1351.

    Article  PubMed  Google Scholar 

  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442.

    Article  PubMed  Google Scholar 

  • Gallé, A., Csiszár, J., Secenji, M., Guóth, A., Cseuz, L., Tari, I., Györgyey, J., and Erdei, L. (2009). Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J. Plant Physiol. 166, 1878–1891.

    Article  PubMed  Google Scholar 

  • Habig, W.H., Pabst, M.J., and Jakoby, W.B. (1974). Glutathione Stransferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  • He, C. Finlayson, S.A., Drew, M.C., Jordan, W.R., and Morgan, P.W. (1996). Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol. 112, 1679–1685.

    CAS  PubMed  Google Scholar 

  • Heyes, D.J., Sakuma, M., and Scrutton, N.S. (2007). Laser excitation studies of the product release steps in the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase. J. Biol. Chem. 282, 32015–32020.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.S., Kim, H.S., Kim, H.N., Kim, Y.S., Baek, K.H., Park, Y.I., Joung, H., and Jeon, J.H. (2007). Growth and tuberization of transgenic potato plants expressing sense and antisense sequences of Cu/Zn superoxide dismutase from lily chloroplast. J. Plant Biol. 50, 490–495.

    Article  CAS  Google Scholar 

  • Leshem, Y., Seri, L., and Levine, A. (2007). Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51, 185–197.

    Article  CAS  PubMed  Google Scholar 

  • Lin, F., Ding, H., Wang, J., Zhang, H., Zhang, A., Zhang, Y., Tan, M., Dong, W., and Jiang, M. (2009). Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J. Exp. Bot. 60, 3221–3238.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., and Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 51, 941–954.

    Article  CAS  PubMed  Google Scholar 

  • Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., and Foyer, C.H. (2005). Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 56, 417–423.

    Article  CAS  PubMed  Google Scholar 

  • McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

    CAS  PubMed  Google Scholar 

  • Mittler, R., Herr, E.H., Orvar, B.L., Van Camp, W., Willekens, H., Inzé, D., and Ellis, B.E. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA 96, 14165–14170.

    Article  CAS  PubMed  Google Scholar 

  • Moeder, W., Barry, C.S., Tauriainen, A.A., Betz, C., Tuomainen, J., Utriainen, M., Grierson, D., Sandermann, H., Langebartels, C., and Kangasjärvi, J. (2002). Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol. 130, 1918–1926.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, N., Itoh, T., Takikawa, S., Asai, N., Tamaoki, M., Aono, M., Kubo, A., Azumi, Y., Kamada, H., and Saji, H. (2002). Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Environ. 25, 727–736.

    Article  CAS  Google Scholar 

  • Nakano, Y., and Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate depleted medium. Plant Cell Physiol. 28, 131–140.

    CAS  Google Scholar 

  • Nehring, R.B., and Ecker, J.R. (2004). Ethylene responses in seedling growth and development. In Plant Hormones Biosynthesis, Signal Transduction, Action. P.J., Davies, ed. (Dordrecht: Springer), pp. 350–368.

    Google Scholar 

  • Oetiker, J.H., Olson, D.C., Shiu, O.Y., and Yang, S.F. (1997). Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol. Biol. 34, 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Overmyer, K., Brosché, M., and Kangasjärvi, J. (2003). RReactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Park, K.Y., Drory, A., and Woodson, W.R. (1992). Molecular cloning of an 1-aminocyclopropane-1-carboxylate synthase from senescing carnation flower petals. Plant Mol. Biol. 18, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Pech, J.C., Latché, A., and Bouzayen, M. (2004). Ethylene biosynthesis. In P.J., Davies, ed. Plant Hormones Biosynthesis, Signal Transduction, Action. (Dordrecht: Springer), pp. 115–136.

    Google Scholar 

  • Ralph, S.G., Hudgins, J.W., Jancsik, S., Franceschi, V.R., and Bohlmann, J. (2007). Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol. 143, 410–424.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.V., Lee, H.I., Davis, K.R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J. 32, 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Robison, M.M., Griffith, M., Pauls, K.P., and Glick, B.R. (2001). Dual role for ethylene in susceptibility of tomato to verticillium wilt. J. Phytopathol. 149, 385–388.

    Article  CAS  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, O.Y., Oetiker, J.H., Yip, W.K., and Yang, S.F. (1998). The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc. Natl. Acad. Sci. USA 95, 10334–10339.

    Article  CAS  PubMed  Google Scholar 

  • Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENERESPONSE-FACTOR1. Genes Dev. 12, 3703–3714.

    Article  CAS  PubMed  Google Scholar 

  • Stearns, J.C., and Glick, B.R. (2003). Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol. Adv. 21, 193–210.

    Article  CAS  PubMed  Google Scholar 

  • Steffens, B., and Sauter, M. (2009). Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21, 184–196.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuki, M., and Mori, H. (2001). Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J. Biol. Chem. 276, 28051–28057.

    Article  CAS  PubMed  Google Scholar 

  • Tenhaken, R., Levine, A., Brisson, L.F., Dixon, R.A., and Lamb, C. (1995). Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92, 4158–4163.

    Article  CAS  PubMed  Google Scholar 

  • Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Von Dahl, C.C., Winz, R.A., Halitschke, R., Kühnemann, F., Gase, K., and Baldwin, I.T. (2007). Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J. 51, 293–307.

    Article  Google Scholar 

  • Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515–532.

    Article  CAS  PubMed  Google Scholar 

  • Wi, S.J., and Park, K.Y. (2002). Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol. Cells 13, 209–220.

    CAS  PubMed  Google Scholar 

  • Woeste, K.E., Ye, C., and Kieber, J.J. (1999). Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521–530.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Zhang, Z., Zhang, H., Wang, X.C., and Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 148, 1953–1963.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, H., Quan, R., Wang, X.C., and Huang, R. (2009). Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 150, 365–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ky Young Park.

About this article

Cite this article

Wi, S.J., Jang, S.J. & Park, K.Y. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum . Mol Cells 30, 37–49 (2010). https://doi.org/10.1007/s10059-010-0086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0086-z

Keywords

Navigation