Skip to main content
Log in

Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We studied the effects of foliar application of urea or methyl-jasmonate (MeJA) on the salinity tolerance of broccoli plants (Brassisca oleracea L. var. italica). Plant dry weight, leaf CO2 assimilation, and root respiration were reduced significantly under moderate saline stress (40 mM NaCl) but application of either urea or MeJA maintained growth, gas exchange parameters, and leaf N–NO3 concentrations at values similar to those of non-salinized plants. Additionally, when these two foliar treatments were applied leaf Na+ concentration was reduced compared with control plants grown at 40 mM NaCl. However, at a higher salt concentration (120 mM NaCl), no effect of the foliar applications was found on these parameters. Salinity also decreased leaf δ15N but increased δ13C. Our study shows the feasibility of using foliar urea or MeJA to improve tolerance under moderate saline stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol Plant 42:89–95

    Article  CAS  Google Scholar 

  • Bar Y, Apelbaum A, Kafkafi U, Goren R (1997) Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J Plant Nutr 20:715–731

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Boari F, Cantore V, Cucci G (1997) Brackish water and physiological aspects of broccoli. Acta Hort 449:657–664

    Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tiss Organ Cult 73:101–115

    Article  CAS  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism, Advances in photosynthesis, vol 9. Academic Publishers, The Netherlands, pp 399–434

    Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium Hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Molero G, Bort J, Nogues S, Araus JL (2007) The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Delta C-13 in durum wheat potted plants. Ann Appl Biol 151:277–289

    Article  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  Google Scholar 

  • Choi WJ, Ro HM, Chang SX (2005) Carbon isotope composition of Phragmites australis in a constructed saline wetland. Aquat Bot 82:27–38

    Article  Google Scholar 

  • Cram WJ (1983) Chloride accumulation as a homeostatic system: set points and perturbation. J Exp Bot 34:1484–1502

    Article  CAS  Google Scholar 

  • De Pascale S, Maggio A, Barbieri G (2005) Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur J Agron 23:254–264

    Article  Google Scholar 

  • del Amor FM, Cuadra-Crespo P, Varó P, Gómez MC (2009) Influence of foliar urea on the antioxidant response and fruit color of sweet pepper under limited N supply. J Sci Food Agric 89:504–510

    Article  CAS  Google Scholar 

  • del Amor FM, Cuadra-Crespo P, Walker DJ, Cámara JM, Madrid R (2010) Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. J Plant Physiol 167:1232–1238

    Article  PubMed  Google Scholar 

  • Dong SF, Cheng LL, Scagel CF, Fuchigami LH (2004) Nitrogen mobilization, nitrogen uptake and growth of cuttings obtained from poplar stock plants grown in different N regimes and sprayed with urea in autumn. Tree Physiol 24:355–359

    CAS  PubMed  Google Scholar 

  • Embleton TW, Stolzy LH, Devitt DA, Jones WW, EI-Motaium R, Summers LL (1986) Citrus nitrogen fertilizer management, groundwater pollution, soil salinity and nitrogen balance. Appl Agr Res 1:57–64

    Google Scholar 

  • Everaarts AP, De willigen P (1999) The effect of nitrogen and the method of application on yield and quality of broccoli. Nether J Agric Sci 47:123–133

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fedina IS, Benderliev KM (2000) Response of Scenedesmus Incrassatulus to salt stress as affected by methyl jasmonate. Biol Plant 43:625–627

    Article  CAS  Google Scholar 

  • Fedina IS, Tsonev TD (1997) Effect of pretreatment with methyl jasmonate on the response of Pisum sativum to salt stress. J Plant Physiol 151:735–740

    CAS  Google Scholar 

  • Grattan SR, Grieve CM, Smith TE, Lauchli A, Poss JA, Suarez DL (2006) Can broccoli tolerate higher concentrations of boron under saline conditions? 18th World Congress of Soil Science, Philadelphia, p 75

  • Habib R, Millard P, Proe MF (1993) Modeling the seasonal nitrogen partitioning in young sycamore (Acer-Pseudoplatanus) trees in relation to nitrogen supply. Ann Bot 71:453–459

    Article  CAS  Google Scholar 

  • Handley LL, Scrimgeour CM (1997) Terrestrial plant ecology and N-15 natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv Ecol Res 27:133–212

    Article  Google Scholar 

  • Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR (1999) The N-15 natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Austr J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Hasaneen MNA, Younis ME, El-Bialy DMA (2008) Plant growth, metabolism and adaptation in relation to stress conditions: Further studies supporting nullification of harmful effects of salinity in lettuce plants by urea treatment. Plant Soil Environ 54:123–131

    CAS  Google Scholar 

  • Hawkins HJ, Lewis OAM (1993) Effect of NaCl salinity, N form, calcium and potassium concentration on N uptake and kinetics in Triticum aestivum L. cv. Gametos. New Phytol 124:171–177

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (1998) Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 204:212–219

    Article  CAS  Google Scholar 

  • Kafkafi U, Yaeesh Siddiqi M, Ritchie RJ, Glass ADM, Ruth TJ (1992) Reduction of nitrate (13NO3) influx and nitrogen (13N) translocation by tomato and melon varieties after short exposure to calcium and potassium chloride salts. J Plant Nutr 15:959–975

    Article  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tilliard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    Article  CAS  PubMed  Google Scholar 

  • LeStrange M, Mayberry KS, Koike ST, Valencia J (1996) Broccoli production in California. UCANR Publication 7211

  • López-Berenguer C, Carvajal M, García-Viguera C, Alcaraz CF (2007) Nitrogen, phosphorus, and sulphur nutrition in Broccoli plants grown under salinity. J Plant Nutr 30:1855–1870

    Article  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Article  Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage. Agron Monogr. Amer Soc Agron, Madison, pp 55–108

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nicoulaud BAL, Bloom AJ (1996) Absorption and assimilation of foliarly applied urea in tomato. J Amer Soc Hort Sci 121:1117–1121

    Google Scholar 

  • Niu XM, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in Nacl stress environments. Plant Physiol 109:735–742

    CAS  PubMed  Google Scholar 

  • Papadopoulos I, Rending VV (1983) Interactive effects of salinity and nitrogen on growth and yields of tomato plants. Plant Soil 73:47–57

    Article  CAS  Google Scholar 

  • Parra-Lobato MC, Fernández-Garcia N, Olmos E, Alvarez-Tinauta MC, Gómez-Jiméneza MC (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exp Bot 66:9–17

    Article  CAS  Google Scholar 

  • Pessarakli M (1991) Dry-matter yield, N-15 absorption, and water-uptake by green bean under sodium-chloride stress. Crop Sci 31:1633–1640

    Article  CAS  Google Scholar 

  • Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49

    Article  CAS  Google Scholar 

  • Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP (2000) Using stable isotope natural abundances (delta N-15 and delta C-13) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. J Exp Bot 51:41–50

    Article  CAS  PubMed  Google Scholar 

  • Serret MD, Ortiz-Monasterio I, Pardo A, Araus JL (2008) The effects of urea fertilisation and genotype on yield, nitrogen use efficiency, delta N-15 and delta C-13 in wheat. Ann Appl Biol 153:243–257

    CAS  Google Scholar 

  • Sobrado MA (1999) Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl. Photosynthetica 36:547–555

    Article  Google Scholar 

  • Stock WD, Evans JR (2006) Effects of water availability, nitrogen supply and atmospheric CO2 concentrations on plant nitrogen natural abundance values. Func Plant Biol 33:219–227

    Article  CAS  Google Scholar 

  • Suhayda CG, Giannini JL, Briskin DP, Shannon MC (1990) Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol 93:471–478

    Article  CAS  PubMed  Google Scholar 

  • Sultana N, Ikeda T, Kashem MA (2001) Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ Exp Bot 46:129–140

    Article  CAS  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526

    Article  CAS  PubMed  Google Scholar 

  • Tsonev TD, Lazova GN, Stoinova ZG, Popova LP (1998) A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. J Plant Growth Regul 17:153–159

    Article  CAS  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008a) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008b) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Func Integr Genom 6:143–156

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Yan C, Guo X, Ye B (2008) Variation in the δ13C of two mangrove plants is correlated with stomatal response to salinity. J Plant Growth Regul 27:263–269

    Article  CAS  Google Scholar 

  • Witte CP, Tiller SA, Taylor MA, Davies HV (2002) Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of 15 N after foliar urea applications in wild-tipy and urease-antisense transgenics. Plant Physiol 128:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR (1983) Salinity resistance—physiologies and prices. Plant Physiol 58:214–222

    Article  CAS  Google Scholar 

  • Yeo AR, Caporn SJM, Flowers TJ (1985) The effect of salinity upon photosynthesis in rice (Oryza-Sativa L.): gas-exchange by individual leaves in relation to their salt content. J Exp Bot 36:1240–1248

    Article  CAS  Google Scholar 

  • Zheng Y, Wang Z, Sun X, Jia A, Jiang G, Li Z (2008) Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ Exp Bot 62:129–138

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Paula Cuadra-Crespo is the recipient of a pre-doctoral fellowship from the IMIDA. The authors thank G. Ortuño for his technical assistance. This work has been supported by the Instituto Nacional de Investigaciones Agrarias (INIA), through project RTA2008-00089. Part of this work was also funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. del Amor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Amor, F.M., Cuadra-Crespo, P. Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63, 55–62 (2011). https://doi.org/10.1007/s10725-010-9511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9511-8

Keywords

Navigation