Skip to main content

Morphologically Identified Sensory Receptor End-Organs in the Airways, Lungs and Visceral Pleura

  • Chapter
  • First Online:
Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 211))

  • 526 Accesses

Abstract

Immunohistochemistry, chemical or mechanical denervation, and neuronal tracing, in combination with confocal microscopy have proven to be valuable tools to study the overall sensory innervation of the airways, with special reference to airway sensory receptor morphology. The current overview focuses on the morphology, location, origin and neurochemical coding of intrapulmonary sensory receptor end-organs that are morphologically well characterised: smooth muscle-associated airway receptors (SMARs), neuroepithelial bodies (NEBs) and visceral pleura receptors (VPRs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen D, Scheuermann DW (1993) Neuroendocrine cells and nerves of the lung. Anat Rec 236:70–85

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen D, Timmermans J-P (2004) Purinergic signalling in the lung: important in asthma and COPD? Curr Opin Pharmacol 4:207–214

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen D, Timmermans J-P, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW (1998) Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res 293:395–405

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40

    Article  Google Scholar 

  • Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970

    Article  PubMed  CAS  Google Scholar 

  • Aguayo SM (1993) Pulmonary neuroendocrine cells in tobacco-related lung disorders. Anat Rec 236:122–127

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Nadel JA, McDonald DM (1992) Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 319:586–598

    Article  PubMed  CAS  Google Scholar 

  • Banks RW, Bewick GS, Reid B, Richardson C (2002) Evidence for activity-dependent modulation of sensory-terminal excitability in spindles by glutamate release from synaptic-like vesicles. Adv Exp Med Biol 508:13–18

    Article  PubMed  Google Scholar 

  • Bayliss DA, Barret QB (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR, Peterson DF (1993) Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors? J Physiol 464:681–698

    PubMed  CAS  Google Scholar 

  • Berkley HJ (1894) The intrinsic pulmonary nerves in mammalia. John Hopkins Hosp Res 4: 240–247

    Google Scholar 

  • Berthoud H-R, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol 195:183–191

    Article  PubMed  CAS  Google Scholar 

  • Bewick GS, Reid B, Richardson C, Banks RW (2005) Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562:381–394

    Article  PubMed  CAS  Google Scholar 

  • Bishop AE (2004) Pulmonary epithelial stem cells. Cell Prolif 37:89–96

    Article  PubMed  CAS  Google Scholar 

  • Bollé T, Lauweryns JM, Van Lommel A (2000) Postnatal maturation of neuroepithelial bodies and carotid body innervation: a quantitative investigation in the rabbit. J Neurocytol 29:241–248

    Article  PubMed  Google Scholar 

  • Bousbaa H, Fleury-Feith J (1991) Effects of a long-standing challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Resp Dis 144:714–717

    Article  PubMed  CAS  Google Scholar 

  • Bousbaa H, Poron F, Fleury-Feith J (1994) Changes in chromogranin A-immunoreactive guinea-pig pulmonary neuroendocrine cells after sensitization and challenge with ovalbumin. Cell Tissue Res 275:195–199

    Article  PubMed  CAS  Google Scholar 

  • Brims FJ, Davies HE, Lee YC (2010) Respiratory chest pain: diagnosis and treatment. Med Clin North Am 94:217–232

    Article  PubMed  Google Scholar 

  • Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61

    PubMed  CAS  Google Scholar 

  • Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2002a) Neuroepithelial bodies: a morphologic substrate for the link between neuronal nitric oxide and sensitivity to airway hypoxia? J Comp Neurol 449:343–354

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Van Nassauw L, Van Genechten J, Majewski M, Scheuermann DW, Timmermans J-P, Adriaensen D (2002b) Triple immunofluorescence staining method with antibodies raised in the same species to study the complex innervation pattern of intrapulmonary chemoreceptors. J Histochem Cytochem 50:575–582

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Van Genechten J, Burnstock G, Timmermans J-P, Adriaensen D (2003a) Ontogenesis of P2X3 receptor-expressing nerve fibres in the rat lung, with special reference to neuroepithelial bodies. Biomed Res 14:80–86

    CAS  Google Scholar 

  • Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans J-P, Adriaensen D (2003b) Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 28:275–285

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, Van Genechten J, De Proost I, Timmermans J-P, Adriaensen D (2004) Vesicular glutamate transporter 2 is expressed in different nerve fibre populations that selectively contact pulmonary neuroepithelial bodies. Histochem Cell Biol 121:1–12

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, De Proost I, Pintelon I, Timmermans J-P, Adriaensen D (2006a) Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 126–127:307–319

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, De Proost I, Alewaters R, Timmermans J-P, Adriaensen D (2006b) Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies. Histochem Cell Biol 125:351–367

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, De Proost I, Timmermans J-P, Adriaensen D (2009a) Diverse and complex airway receptors in rodent lungs. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science publishers, Enfield, New Hampshire, pp 235–268

    Chapter  Google Scholar 

  • Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans J-P, Adriaensen D (2009b) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131:55–74

    Article  PubMed  CAS  Google Scholar 

  • Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100:1284–1294

    Article  PubMed  CAS  Google Scholar 

  • Burgers JA, Meerbeeck JP, Postmus PE (1999) De Pleura. In: Hoogsteden HC, Dekhuijzen PNR, Joos GF, Postmus PE (eds) Leerboek Longziekten. Elsevier/Bunge, Maarssen, pp 247–255

    Google Scholar 

  • Burnstock G (2009) Purines and sensory nerves. Handb Exp Pharmacol (194):333–392

    Google Scholar 

  • Cadieux A, Springall DR, Mulderry PK, Rodrigo J, Ghatei MA, Terenghi G, Bloom SR, Polak JM (1986) Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience 19:605–627

    Article  PubMed  CAS  Google Scholar 

  • Campanucci VA, Nurse CA (2007) Autonomic innervation of the carotid body: role in efferent inhibition. Respir Phsyiol Neurobiol 157:83–92

    Article  CAS  Google Scholar 

  • Canning BJ (2006) Reflex regulation of airway smooth muscle tone. J Appl Physiol 101:971–985

    Article  PubMed  CAS  Google Scholar 

  • Capps JA (1911) An experimental study of the pain sense in the pleural membranes. Arch Intern Med 8:717–733

    Google Scholar 

  • Carabba VH, Sorokin SP, Hoyt RFJ (1985) Development of neuroepithelial bodies in intact and cultured lungs of fetal rats. Am J Anat 173:1–27

    Article  PubMed  CAS  Google Scholar 

  • Castro CM, Yang Y, Zhang Z, Linnoila RI (2000) Attenuation of pulmonary neuroendocrine differentiation in mice lacking Clara cell secretory protein. Lab Invest 80:1533–1540

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International union of pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581

    Article  PubMed  CAS  Google Scholar 

  • Chen MF, Kimizuka G, Wang NS (1987) Human fetal lung changes associated with maternal smoking during pregnancy. Pediatr Pulmonol 3:51–58

    Article  PubMed  CAS  Google Scholar 

  • Cho T, Chan W, Cutz E (1989) Distribution and frequency of neuro-epithelial bodies in post-natal rabbit lung: quantitative study with monoclonal antibody against serotonin. Cell Tissue Res 255:353–362

    Article  PubMed  CAS  Google Scholar 

  • Clara M (1937) Zur Histobiologie des Bronchialepithels. Z Microsk Anat Forsch 41:321–347

    Google Scholar 

  • Cook RD, King AS (1969) A neurite-receptor complex in the avian lung: electron microscopical observations. Experientia 25:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Coulson FR, Fryer AD (2003) Muscarinic acetylcholine receptors and airway diseases. Pharmacol Ther 98:59–69

    Article  PubMed  CAS  Google Scholar 

  • Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826

    Article  PubMed  CAS  Google Scholar 

  • Cutz E (1997) Studies on neuroepithelial bodies under experimental and disease conditions. In: Cutz E (ed) Cellular and molecular biology of airway chemoreceptors. Landes Bioscience, Austin, pp 109–129

    Google Scholar 

  • Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Chan W, Wong V, Conen PE (1974) Endocrine cells in rat fetal lungs. Ultrastructural and histochemical study. Lab Invest 30:458–464

    PubMed  CAS  Google Scholar 

  • Cutz E, Chan W, Sonstegard KS (1978) Identification of neuro-epithelial bodies in rabbit fetal lungs by scanning electron microscopy: a correlative light, transmission and scanning electron microscopic study. Anat Rec 192:459–466

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Chan W, Track NS (1981) Bombesin, calcitonin and leu-enkephalin immunoreactivity in endocrine cells of human lung. Experientia 37:765–767

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Gillan JE, Track NS (1984) Pulmonary endocrine cells in the developing human lung and during neonatal adaptation. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 210–327

    Google Scholar 

  • Cutz E, Gillan JE, Bryan AC (1985) Neuroendocrine cells in the developing human lung: morphologic and functional considerations. Pediatr Pulmonol 1:S21–S29

    PubMed  CAS  Google Scholar 

  • Cutz E, Fu XW, Yeger H, Peers C, Kemp PJ (2003) Oxygen sensing in pulmonary neuroepithelial bodies and related tumor cell models. In: Lahiri S, Semenza GL, Prabhakar NR (eds) Lung oxygen sensing. Marcel Dekker, New York, pp 567–602

    Google Scholar 

  • Cutz E, Fu XW, Yeger H (2004) Methods to study neuroepithelial bodies as airway oxygen sensors. Methods Enzymol 381:26–40

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Yeger H, Pan J, Ito T (2008) Pulmonary neuroendocrine cell system in health and disease. Curr Respir Med Rev 4:174–186

    CAS  Google Scholar 

  • Cutz E, Pan J, Yeger H (2009a) The role of NOX2 and ‘Novel oxidases’ in airway chemoreceptor O2 sensing. Adv Exp Med Biol 648:427–438

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Fu XW, Yeger H, Pan J, Nurse CA (2009b) Oxygen sensing in mammalian pulmonary neuroepithelial bodies. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science Publishers, Enfield, New Hampshire, pp 269–290

    Chapter  Google Scholar 

  • Dakhama A, Kanehiro A, Mäkelä MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitised and challenged mice. Am J Respir Crit Care Med 165:1137–1144

    PubMed  Google Scholar 

  • Dakhama A, Larsen GL, Gelfand EW (2004) Calcitonin gene-related peptide: role in airway homeostasis. Curr Opin Pharmacol 4:215–220

    Article  PubMed  CAS  Google Scholar 

  • Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Timmermans J-P, Adriaensen D (2007a) Selective visualisation of sensory receptors in the smooth muscle layer of ex vivo airway whole mounts by styryl pyridinium dyes. Cell Tissue Res 329:421–431

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Brouns I, Pintelon I, Timmermans J-P, Adriaensen D (2007b) Pulmonary expression of voltage-gated calcium channels: special reference to sensory airway receptors. Histochem Cell Biol 128:301–316

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Dey RD, Hoffpauir JM (1986) Ultrastructural colocalization of the bioactive mediators 5-hydroxytryptamine and bombesin in endocrine cells of human fetal airways. Cell Tissue Res 246:119–124

    Article  PubMed  CAS  Google Scholar 

  • Dinh QT, Groneberg D, Peiser C, Mingomataj E, Joachima RA, Witt C, Arck PC, Klappa FH, Fischer A (2004) Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol 144:15–24

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D (2003) Stretch receptor-associated expression of alpha 3 isoform of the Na+, K+-ATPase in rat peripheral nervous system. Neuroscience 116:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Domnik NJ, Cutz E (2011) Pulmonary neuroepithelial bodies as airway sensors: putative role in the generation of dyspnea. Curr Opin Pharmacol 11:211–217

    Article  PubMed  CAS  Google Scholar 

  • Duc C, Barakat-Walter I, Droz B (1994) Innervation of putative rapidly adapting mechanorecptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271

    Article  PubMed  CAS  Google Scholar 

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud H-R, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium- binding proteins. J Comp Neurol 398:289–307

    Article  PubMed  Google Scholar 

  • Dwinnell FL (1966) Studies on the nerve endings in the visceral pleura. Am J Anat 118:217–226

    Article  PubMed  Google Scholar 

  • e Silva MJ, Lewis DL (1995) L- and N-type Ca2+ channels in adult rat carotid body chemoreceptor type I cells. J Physiol 489:689–699

    PubMed  CAS  Google Scholar 

  • Elftman AG (1943) The afferent and parasympathetic innervation of the lungs and trachea of the dog. Am J Anat 72:1–27

    Article  Google Scholar 

  • England DM, Hochholzer L, McCarthy MJ (1989) Localized benign and malignant fibrous tumors of the pleura. Am J Surg Pathol 13:640–658

    Article  PubMed  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  • Feyrter F (1938) In: Barth JA (ed) Uber diffuse endokrine epitheliale Organe. Leipzig, pp 1–62

    Google Scholar 

  • Feyrter F (1953) Über die peripheren endokrinen (parakrinen) Drüsen des Menschen. Wilhelm Maudrich, Wien

    Google Scholar 

  • Fischer A, Kummer W, Couraud JY, Adler D, Branscheid D, Heym C (1992) Immunohistochemical localization of receptors for vasoactive intestinal peptide and substance P in human trachea. Lab Invest 67:387–393

    PubMed  CAS  Google Scholar 

  • Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL (2001) Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J Neurosci 21:8602–8615

    PubMed  CAS  Google Scholar 

  • Fröhlich F (1949) Die “Helle Zelle” der Bronchialschleimhaut und ihre Beziehungen zum Problem der Chemoreceptoren. Frankf Z Pathol 60:517–559

    PubMed  Google Scholar 

  • Fu XW, Spindel ER (2009) Recruitment of GABA(A) receptors in chemoreceptor pulmonary neuroepithelial bodies by prenatal nicotine exposure in monkey lung. Adv Exp Med Biol 648:439–445

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wang YT, Cutz E (1999) Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. J Physiol 514:139–150

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Wang D, Pan J, Farragher SM, Wong V, Cutz E (2001) Neuroepithelial bodies in mammalian lung express functional serotonin type 3 receptor. Am J Physiol Lung Cell Mol Physiol 281:L931–L940

    PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wong V, Cutz E (2002) Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol 539:503–510

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Farragher SM, Cutz E (2003) Expression of functional nicotinic acetylcholine receptors in neuroepithelial bodies of neonatal hamster lung. Am J Physiol Lung Cell Mol Physiol 285:1203–1212

    Google Scholar 

  • Fu XW, Nurse C, Cutz E (2004) Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission. Biol Chem 385:275–284

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse C, Cutz E (2007) Characterization of slowly inactivating KVá current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine. Am J Physiol Lung Cell Mol Physiol 293:L892–L902

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Kanno T, Kobayashi S (1988) The paraneuron. Springer, Tokyo

    Google Scholar 

  • Gallego R, Garcia-Caballero T, Roson E, Beiras A (1990) Neuroendocrine cells of the human lung express substance-P-like immunoreactivity. Acta Anat (Basel) 139:278–282

    Article  CAS  Google Scholar 

  • Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175:547–553

    Article  PubMed  Google Scholar 

  • Gomez-Pascual A, Martin-Lacave I, Moreno AM, Fernandez A, Galera H (1990) Neuroendocrine (NE) cells in rat neonatal lungs. A histochemical and immuncytochemical study. Anat Histol Embryol 19:158–163

    Article  PubMed  CAS  Google Scholar 

  • Gosney JR (1993) Pulmonary neuroendocrine cells in species at high altitude. Anat Rec 236:105–107

    Article  PubMed  CAS  Google Scholar 

  • Gosney JR, Sissons M (1985) Widespread distribution of bronchopulmonary endocrine cells immunoreactive for calcitonin in the lung of the normal adult rat. Thorax 40:194–198

    Article  PubMed  CAS  Google Scholar 

  • Hage E (1976) Endocrine-like cells of the pulmonary epithelium. In: Coupland RE, Fujita T (eds) Chromaffin, enterochromaffin and related cells. Elsevier, Amsterdam

    Google Scholar 

  • Haller CJ (1994) A scanning and transmission electron microscopic study of the development of the surface structure of neuroepithelial bodies in the mouse lung. Micron 25:527–538

    Article  PubMed  CAS  Google Scholar 

  • Hartness ME, Lewis A, Searle GJ, O’Kelly I, Peers C, Kemp PJ (2001) Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channel. J Biol Chem 276:26499–26508

    Article  PubMed  CAS  Google Scholar 

  • Helle KB (2010) Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept 165:45–51

    Article  PubMed  CAS  Google Scholar 

  • Helliwell RJA, McLatchie LM, Clarke M, Winter J, Bevan S, McIntyre P (1998) Capsaicin sensitivity is associated with the expression of the vanniloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci Lett 250:177–180

    Article  PubMed  CAS  Google Scholar 

  • Helset E, Kjaeve J, Bjertnaes L, Lundberg JM (1995) Acute alveolar hypoxia increases endothelin-1 release but decreases release of calcitonin gene-related peptide in isolated perfused rat lungs. Scand J Clin Lab Invest 55:369–376

    Article  PubMed  CAS  Google Scholar 

  • Hering E (1868) Die Selbesteuerung der Athmung durch den Nervus vagus. Sber Akad Wiss Wein 57:672–677

    Google Scholar 

  • Hille B (1986) Ionic channels: molecular pores of excitable membranes. Harvey Lect 82:47–69

    PubMed  CAS  Google Scholar 

  • Ho C-Y, Gu Q, Lin YS, Lee L-Y (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    PubMed  CAS  Google Scholar 

  • Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681

    PubMed  CAS  Google Scholar 

  • Honig MG (1993) DiI Labelling. Neurosci Prot 93-050-16-01-20

    Google Scholar 

  • Honjin R (1956) On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J Comp Neurol 105:587–625

    Article  PubMed  CAS  Google Scholar 

  • Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32:128–141

    Article  PubMed  CAS  Google Scholar 

  • Hung K-S (1980) Innervation of rabbit fetal lungs. Am J Anat 159:78–83

    Article  Google Scholar 

  • Hung K-S (1982) Development of neuroepithelial bodies in pre- and postnatal mouse lungs: scanning electron microscopic study. Anat Rec 203:285–291

    Article  PubMed  CAS  Google Scholar 

  • Hung K-S (1984) Histology, ultrastructure, and development of the pulmonary endocrine cell. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 162–192

    Google Scholar 

  • Hung K-S, Loosli CG (1974) Bronchiolar neuro-epithelial bodies in the neonatal mouse lungs. Am J Anat 140:191–200

    Article  PubMed  CAS  Google Scholar 

  • Hung K-S, Hertweck MS, Hardy JD, Loosli CG (1973) Ultrastructure of nerves and associated cells in bronchiolar epithelium of the mouse lung. J Ultrastr Res 43:426–437

    Article  CAS  Google Scholar 

  • Ito T, Nozawa A, Usuda Y, Kitamura H, Kanisawa M (1995) Hamster pulmonary endocrine cells with neural cell adhesion molecule (NCAM) immunostaining. Histochem Cell Biol 104:357–362

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Udaka N, Inayama Y, Kitamura H, Kanisawa M (1998) Hamster pulmonary endocrine cells with positive immunostaining for calbindin-D-28K. Histochem Cell Biol 109:67–73

    PubMed  CAS  Google Scholar 

  • Ito T, Udaka N, Kawano N, Nogawa H, Kitamura H (1999) Ontogeny of pulmonary neuroendocrine cells which express the alpha-subunit of guanine nucleotide-binding protein Go. Histochem Cell Biol 111:289–295

    Article  PubMed  CAS  Google Scholar 

  • Jammes Y, Trousse D, Delpierre S (2005) Identification and properties of parietal pleural afferents in rabbits. J Physiol 567:641–650

    Article  PubMed  CAS  Google Scholar 

  • Jeffery PK (1995) Structure: microscopic structure of normal lung. In: Corrin B, Geddes DM, Gibson GJ (eds) Respiratory medicine. WB Saunders, London, pp 3–72

    Google Scholar 

  • Jeffery PK, Reid L (1975) New observations of rat airway epithelium: a quantitative and electron microscopic study. J Anat 120:195–320

    Google Scholar 

  • Kannari K, Sato O, Maeda T, Iwanaga T, Fujita T (1991) A possible mechanism of mechanoreception in Ruffini endings in the peridontal ligament of hamster incisors. J Comp Neurol 313:368–376

    Article  PubMed  CAS  Google Scholar 

  • Kasacka I (2008) Quantitative characteristics of calcitonin-producing cells in the thyroid and lungs of uremic rats. Folia Histochem Cytobiol 46:525–530

    Article  PubMed  Google Scholar 

  • Kasprzak A, Zabel M, Biczysko W (2007) Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours. Pol J Pathol 58:23–33

    PubMed  CAS  Google Scholar 

  • Katz DM, Markey KA, Goldstein M, Black IB (1983) Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc Natl Acad Sci USA 80:3526–3530

    Article  PubMed  CAS  Google Scholar 

  • Katz DM, Adler JE, Black IB (1987) Catecholaminergic sensory neurons: autonomic targets and mechanisms of transmitter regulation. FASEB J 46:24–29

    CAS  Google Scholar 

  • Keith IM, Pelto-Huikko M, Schalling M, Hokfelt T (1991) Calcitonin gene-related peptide and its mRNA in pulmonary neuroendocrine cells and ganglia. Histochemistry 96:311–315

    Article  PubMed  CAS  Google Scholar 

  • Kemp PJ (2006) Detecting acute changes in oxygen: will the real sensor please stand up? Exp Physiol 91:829–834

    Article  PubMed  CAS  Google Scholar 

  • Kemp PJ, Peers C (2009) Enzyme-linked acute oxygen sensing in airway and arterial chemoreceptors–invited article. Adv Exp Med Biol 648:39–48

    Article  PubMed  CAS  Google Scholar 

  • Kemp PJ, Lewis A, Hartness M, Searle GJ, Miller P, O’Kelly I, Peers C (2002) Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 166:S17–S24

    Article  PubMed  Google Scholar 

  • Kemp PJ, Searle GJ, Hartness ME, Lewis A, Miller P, Williams S, Wootton P, Adriaensen D, Peers C (2003) Acute oxygen sensing in cellular models: relevance to the physiology of pulmonary neuroepithelial and carotid bodies. Anat Rec 270:41–50

    Article  CAS  Google Scholar 

  • Kemp PJ, Telezhkin V, Wilkinson WJ, Mears R, Hanmer SB, Gadeberg HC, Muller CT, Riccardi D, Brazier SP (2009) Enzyme-linked oxygen sensing by potassium channels. Ann N Y Acad Sci 1177:112–118

    Article  PubMed  CAS  Google Scholar 

  • Kiefer JC (2011) Primer and interviews: the dynamic stem cell niche. Dev Dyn 240:737–743

    Article  PubMed  Google Scholar 

  • Kim D (2003) Fatty acid-sensitive two-pore domain K+ channels. Trends Pharmacol Sci 24:648–654

    Article  PubMed  CAS  Google Scholar 

  • Kollarik M, Ru F, Brozmanova M (2010) Vagal afferent nerves with the properties of nociceptors. Auton Neurosci Basic Clin 153:12–20

    Article  CAS  Google Scholar 

  • Kratz JR, Yagui-Beltran A, Jablons DM (2010) Cancer stem cells in lung tumorigenesis. Ann Thorac Surg 89:S2090–S2095

    Article  PubMed  Google Scholar 

  • Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR (2006) Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101:618–627

    Article  PubMed  Google Scholar 

  • Kummer W, Gibbins IL, Stefan P, Kapoor V (1990) Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 261:595–606

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Fischer A, Kurkowski R, Heym C (1992b) The sensory and sympathetic innervation of guinea pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Lips KS, Pfeil U (2008) The epithelial cholinergic system of the airways. Histochem Cell Biol 130:219–234

    Article  PubMed  CAS  Google Scholar 

  • Kuo HP, Rohde JA, Tokuyama K, Barnes PJ, Rogers DF (1990) Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J Physiol 431:629–641

    PubMed  CAS  Google Scholar 

  • Larsell O (1921) Nerve termination in the lung of the rabbit. J Comp Neurol 33:105–132

    Article  Google Scholar 

  • Larsell O (1922) The ganglia, plexuses, and nerve-terminations of the mammalian lung and pleura pulmonalis. J Comp Neurol 35:97–132

    Article  Google Scholar 

  • Larsell O, Coffey JR (1928) The effect on respiration of stimulating the nerve terminations in the visceral pleura. Anat Rec 28:20

    Google Scholar 

  • Larsell O, Dow RS (1933) The innervation of the human lung. Am J Anat 52:125–146

    Article  Google Scholar 

  • Larson SD, Schelegle ES, Hyde DM, Plopper CG (2003) The three-dimensional distribution of nerves along the entire intrapulmonary airway tree of the adult rat and the anatomical relationship between nerves and neuroepithelial bodies. Am J Respir Cell Mol Biol 28:592–599

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Cokelaere M (1973a) Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors modulated by the CNS. Z Zellforsch 143:521–540

    Article  Google Scholar 

  • Lauweryns JM, Cokelaere M (1973b) Intrapulmonary neuro-epithelial bodies: hypoxia-sensitive neuro(chemo-)receptors. Experientia 29:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Peuskens JC (1972) Neuro-epithelial bodies (neuroreceptor or secretory organs?) in human infant bronchial and bronchiolar epithelium. Anat Rec 172:471–481

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Lommel A (1982) Morphometric analysis of hypoxia-induced synaptic activity in intrapulmonary neuroepithelial bodies. Cell Tissue Res 226:201–214

    PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Lommel A (1986) Effect of various vagotomy procedures on the reaction to hypoxia of rabbit neuroepithelial bodies: modulation by intrapulmonary axon reflexes. Exp Lung Res 11:319–339

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Lommel A (1987) Ultrastructure of nerve endings and synaptic junctions in rabbit intrapulmonary neuroepithelial bodies: a single and serial section analysis. J Anat 151:65–83

    PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Ranst L (1987) Calcitonin gene related peptide immunoreactivity in rat lung: light and electron microscopic study. Thorax 42:183–189

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Ranst L (1988a) Protein gene product 9.5 expression in the lungs of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves. Neurosci Lett 85:311–316

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Ranst L (1988b) Immunocytochemical localization of aromatic L-amino acid decarboxylase in human, rat, and mouse bronchopulmonary and gastrointestinal endocrine cells. J Histochem Cytochem 36:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, de Bock V, Verhofstad AA, Steinbusch HW (1982) Immunohistochemical localization of serotonin in intrapulmonary neuro-epithelial bodies. Cell Tissue Res 226:215–223

    PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Lommel AT, Dom RJ (1985) Innervation of rabbit intrapulmonary neuroepithelial bodies. Quantitative and qualitative ultrastructural study after vagotomy. J Neurol Sci 67:81–92

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, de Bock V, Decramer M (1987) Effects of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies. J Appl Physiol 63:1781–1787

    PubMed  CAS  Google Scholar 

  • Lee I, Gould VE, Moll R, Wiedenmann B, Franke WW (1987) Synatophysin expressed in the bronchopulmonary tract: neuroendocrine cells, neuroepithelial bodies, and neuroendocrine neoplasms. Differentiation 34:115–125

    Article  PubMed  CAS  Google Scholar 

  • Lembrechts R, Pintelon I, Schnorbusch K, Timmermans J-P, Adriaensen D, Brouns I (2011) Expression of mechanogated Two-pore-domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell Biol

    Google Scholar 

  • Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001

    Article  PubMed  CAS  Google Scholar 

  • Li K, Nagalla SR, Spindel ER (1994) A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. Evidence for stimulation of airway growth. J Clin Invest 94: 1605–1615

    Google Scholar 

  • Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Driskell RR, Engelhardt JF (2006) Stem cells in the lung. Methods Enzymol 419:285–321

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Barneo J (1994) Oxygen-sensitive ion channels: how ubiquitous are they? Trends Neurosci 17:133–135

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Hokfelt T, Martling C-R, Saria A, Cuello C (1984) Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res 235:251–261

    Article  PubMed  CAS  Google Scholar 

  • Luts A, Uddman R, Absood A, Håkanson R, Sundler F (1991) Chemical coding of endocrine cells of the airways: presence of helodermin-like peptides. Cell Tissue Res 265:425–433

    Article  PubMed  CAS  Google Scholar 

  • Mahvi D, Bank H, Harley R (1977) Morphology of a napthalene-induced bronchiolar lesion. Am J Pathol 86:558–572

    PubMed  CAS  Google Scholar 

  • Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Schmechel D, Zis AP, Goodwin FK (1979) The existence and neurobiological significance of neuronal and glial forms of the glycolytic enzyme enolase. Biol Psychiatry 14:563–579

    PubMed  CAS  Google Scholar 

  • Martling C-R, Saria A, Fischer JA, Hökfelt T, Lundberg JM (1988) Calcitonin gene-related peptide and the lung: neuronal coexistence with substance P, release by capsaicin and vasodilatory effect. Regul Pept 20:125–139

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Reynolds SM, Mori N, Koller DL, Farmer DG, Myers AC, Canning BJ (2009) Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci 29:13662–13671

    Article  PubMed  CAS  Google Scholar 

  • McBride JT, Springall DR, Winter RJ, Polak JM (1990) Quantitative immunocytochemistry shows calcitonin gene-related peptide-like immunoreactivity in lung neuroendocrine cells is increased by chronic hypoxia in the rat. Am J Respir Cell Mol Biol 3:587–593

    PubMed  CAS  Google Scholar 

  • McLaughlin AIG (1933) Nerves and nerve endings in the visceral pleura of the cat. J Physiol 80:101–104

    PubMed  CAS  Google Scholar 

  • Melville GN, Iravani J (1975) Factors affecting ciliary beat frequency in the intrapulmonary airways of rats. Can J Physiol Pharmacol 53:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19:643–664

    Article  PubMed  CAS  Google Scholar 

  • Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ, Sesma P, Villaro CA (2003) The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 38:155–272

    Article  PubMed  CAS  Google Scholar 

  • Moore KL (1992) The thorax. In: Satterfield ST (ed) Clinically oriented anatomy. Williams and Wilkins, Baltimore, USA, pp 33–126

    Google Scholar 

  • Morikawa Y, Donahoe PK, Hendren WH (1978a) Cholinergic nerve development in fetal lung. Dev Biol 65:541–546

    Article  PubMed  CAS  Google Scholar 

  • Morikawa Y, Donahoe PK, Hendren WH (1978b) Cholinergic nerve development of fetal lung in vitro. J Pediatr Surg 13:653–661

    Article  PubMed  CAS  Google Scholar 

  • Murray JF (2010) The structure and function of the lung. Int J Tuberc Lung Dis 14:391–396

    PubMed  Google Scholar 

  • Myers AC, Kajekar R, Undem BJ (2002) Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 282:L775–L781

    PubMed  CAS  Google Scholar 

  • Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly I, Peers C, Kemp PJ (1998) O2-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am J Physiol 275:L709–L716

    PubMed  Google Scholar 

  • O’Kelly I, Peers C, Kemp PJ (2001) NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells. Biochem Biophys Res Commun 283:1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Oh EJ, Mazzone SB, Canning BJ, Weinreich D (2006) Reflex regulation of airway sympathetic nerves in guinea-pigs. J Physiol 573:549–564

    Article  PubMed  CAS  Google Scholar 

  • O'Kelly I, Stephens RH, Peers C, Kemp PJ (1999) Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 276:L96–L104

    PubMed  Google Scholar 

  • O'Kelly I, Lewis A, Peers C, Kemp PJ (2000) O2 sensing by airway chemoreceptor-derived cells: protein kinase C activation reveals functional evidence for involvement of NADPH oxidase. J Biol Chem 275:7684–7692

    Article  PubMed  Google Scholar 

  • Overholt JL, Prabhakar NR (1997) Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. J Neurophysiol 78:2467–2474

    PubMed  CAS  Google Scholar 

  • Oztay F, Brouns I, Pintelon I, Raab M, Neuhuber WL, Timmermans J-P, Adriaensen D (2010) Neurotrophin-4 dependency of intraepithelial vagal sensory nerve terminals that selectively contact pulmonary NEBs in mice. Histol Histopathol 25:975–984

    PubMed  CAS  Google Scholar 

  • Pack RJ, Barker S, Howe A (1986) The effect of hypoxia on the number of amine-containing cells in the lung of the adult rat. Eur J Respir Dis 68:121–130

    PubMed  CAS  Google Scholar 

  • Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Luk C, Kent G, Cutz E, Yeger H (2006a) Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol 35:320–326

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Copland I, Post M, Yeger H, Cutz E (2006b) Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 290:L185–L193

    Article  PubMed  CAS  Google Scholar 

  • Pearsall AD, Hoyt RF, Sorokin SP (1985) Three-dimensional reconstruction of a small-granule paracrine cell cluster in an adult hamster bronchus. Anat Rec 212:132–142

    Article  PubMed  CAS  Google Scholar 

  • Pearse AG (1977) The diffuse neuroendocrine system and the APUD concept: related “endocrine” peptides in the brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med Biol 55:115–125

    PubMed  CAS  Google Scholar 

  • Peers C, Kemp PJ (2001) Acute oxygen sensing: diverse but convergent mechanisms in airway and arterial chemoreceptors. Respir Res 2:145–149

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle ME, Cobo J, Vega JA (2008) Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett 433:43–47

    Article  PubMed  CAS  Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor physiology. Brain Res Rev 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2003) Pulmonary expression of the vesicular acetylcholine transporter with special reference to neuroepithelial bodies. Auton Neurosci 106:47

    Google Scholar 

  • Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans J-P, Adriaensen D (2007) Sensory receptors in the visceral pleura. Neurochemical coding and live staining in whole mounts. Am J Respir Cell Mol Biol 36:541–551

    Article  PubMed  CAS  Google Scholar 

  • Plopper CG, Suverkropp C, Morin D, Nishio S, Buckpitt A (1992) Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. J Pharmacol Exp Ther 261:353–363

    PubMed  CAS  Google Scholar 

  • Plummer HKI, Sheppard B, Schuller HM (2000) Interaction of tobacco-specific toxicants with nicotinic cholinergic regulation of pulmonary neuroendocrine cells: implications for pediatric lung disease. Exp Lung Res 26:121–135

    Article  PubMed  CAS  Google Scholar 

  • Polak JM, Becker KL, Cutz E, Gail DB, Goniakowska-Witalinska L, Gosney JR, Lauweryns JM, Linnoila I, McDowell EM, Miller YE (1993) Lung endocrine cell markers, peptides, and amines. Anat Rec 236:169–171

    Article  PubMed  CAS  Google Scholar 

  • Porzionato A, Macchi V, Parenti A, Matturri L, De CR (2008) Peripheral chemoreceptors: postnatal development and cytochemical findings in Sudden Infant Death Syndrome. Histol Histopathol 23:351–365

    PubMed  Google Scholar 

  • Powley TL, Phillips RJ (2011) Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 186:188–200

    Article  PubMed  CAS  Google Scholar 

  • Qing X, Svaren J, Keith IM (2001) mRNA expression of novel CGRP1 receptors and their activity-modifying proteins in hypoxic rat lung. Am J Physiol Lung Cell Mol Physiol 280:L547–L554

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function. Cell Tissue Res 312:141–148

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2007) Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. Int Rev Cytol 256:223–275

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Wörl J, Brehmer A, Neuhuber WL (2003) Reduction of NT-3 or TrkC results in fewer putative vagal mechanoreceptors in the mouse esophagus. Auton Neurosci 108:22–31

    Article  PubMed  CAS  Google Scholar 

  • Racké K, Matthiesen S (2004) The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 17:181–198

    Article  PubMed  CAS  Google Scholar 

  • Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133:2455–2465

    Article  PubMed  CAS  Google Scholar 

  • Redecker P, Grube D, Jahn R (1990) Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181:433–440

    Article  PubMed  CAS  Google Scholar 

  • Redick ML, Hung K-S (1984) Quantitation of pulmonary neuroepithelial bodies in pre- and postnatal rabbits. Cell Tissue Res 238:583–587

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Wiedenmann B, Betz H (1986) Molecular characerization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5:535–541

    PubMed  CAS  Google Scholar 

  • Reissig A, Kroegel C (2003) Transthoracic ultrasound of lung and pleura in the diagnosis of pulmonary embolism: a novel non-invasive bedside approach. Respiration 70:441–452

    Article  PubMed  Google Scholar 

  • Reynolds SD, Giangreco A, Power JH, Stripp BR (2000a) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR (2000b) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278:L1256–L1263

    PubMed  CAS  Google Scholar 

  • Reynolds SD, Reynolds PR, Pryhuber GS, Finder JD, Stripp BR (2002) Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways. Am J Respir Crit Care Med 166:1498–1509

    Article  PubMed  Google Scholar 

  • Riccio MM, Kummer W, Biglari B, Myers AC, Undem BJ (1996) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol Lond 496:521–530

    CAS  Google Scholar 

  • Rodrigo J, Hernansez CJ, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100

    Article  PubMed  CAS  Google Scholar 

  • Roncalli M, Springall DR, Maggioni M, Moradoghli-Haftvani A, Winter RJD, Zhao L, Coggi G, Polak JM (1993) Early changes in the calcitonin gene-related peptide (CGRP) content of pulmonary endocrine cells concomitant with vascular remodeling in the hypoxic rat. Am J Respir Cell Mol Biol 9:467–474

    PubMed  CAS  Google Scholar 

  • Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321

    PubMed  CAS  Google Scholar 

  • Roomans GM (2010) Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur Cell Mater 19:284–299

    PubMed  CAS  Google Scholar 

  • Rusch VW (1990) Diagnosis and treatment of pleural mesothelioma. Semin Surg Oncol 6:279–285

    Article  PubMed  CAS  Google Scholar 

  • Salathe M, Lipson EJ, Ivonnet PI, Bookman RJ (1997) Muscarinic signaling in ciliated tracheal epithelial cells: dual effects on Ca2+ and ciliary beating. Am J Physiol 272:L301–L310

    PubMed  CAS  Google Scholar 

  • Sant’Ambrogio G (1982) Information arising from the tracheobronchial tree of mammals. Physiol Rev 62:531–569

    PubMed  Google Scholar 

  • Sartelet H, Maouche K, Totobenazara JL, Petit J, Burlet H, Monteau M, Tournier JM, Birembaut P (2008) Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC). Pathol Res Pract 204:891–898

    Article  PubMed  CAS  Google Scholar 

  • Schäfer MKH, Weihe E, Varoqui H, Eiden LE, Erickson JD (1994) Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci 5:1–26

    Article  PubMed  Google Scholar 

  • Schelegle ES (2003) Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec 270:11–16

    Article  Google Scholar 

  • Scheuermann DW (1987) Morphology and cytochemistry of the endocrine epithelial system in the lung. Int Rev Cytol 106:35–88

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann DW, Adriaensen D, Timmermans J-P, De Groodt-Lasseel MH (1992) Comparative histological overview of the chemical coding of the pulmonary neuroepithelial endocrine system in health and disease. Eur J Morphol 30:101–112

    PubMed  CAS  Google Scholar 

  • Schuil PJ, Rosmalen JG, Graamans K, Huizing EH (1995) Calcitonin gene-related peptide in vitro stimulation of ciliary beat in human upper respiratory cilia. Eur Arch Otorhinolaryngol 252:462–464

    Article  PubMed  CAS  Google Scholar 

  • Schuller HM, Witschi HP, Nylen E, Joshi PA, Correa E, Becker KL (1990) Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res 50:1960–1965

    PubMed  CAS  Google Scholar 

  • Schuller HM, Jull BA, Sheppard BJ, Plummer HK (2000) Interaction of tobacco-specific toxicants with the neuronal alpha(7) nicotinic acetylcholine receptor and its associated mitogenic signal transduction pathway: potential role in lung carcinogenesis and pediatric lung disorders. Eur J Pharmacol 393:265–277

    Article  PubMed  CAS  Google Scholar 

  • Schuller HM, Plummer HK III, Jull BA (2003) Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec 270A:51–58

    Article  CAS  Google Scholar 

  • Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Article  PubMed  CAS  Google Scholar 

  • Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, Lindstrom J, Spindel ER (1999) Prenatal nicotine increases pulmonary a7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest 103:637–647

    Article  PubMed  CAS  Google Scholar 

  • Seldeslagh KA, Lauweryns JM (1997) NCAM expression in the pulmonary neural and diffuse neuroendocrine cell system. Microsc Res Tech 37:69–76

    Article  PubMed  CAS  Google Scholar 

  • Seuwen K, Pouyssegur J (1990) Serotonin as a growth factor. Biochem Pharmacol 39(6):985–990

    Article  PubMed  CAS  Google Scholar 

  • Shimosegawa T, Said SI (1991a) Co-occurrence of immunoreactive calcitonin and calcitonin gene-related peptide in neuroendocrine cells of rat lungs. Cell Tissue Res 264:555–561

    Article  PubMed  CAS  Google Scholar 

  • Shimosegawa T, Said SI (1991b) Pulmonary calcitonin gene-related peptide immunoreactivity: nerve-endocrine cell interrelationships. Am J Respir Cell Mol Biol 4:126–134

    PubMed  CAS  Google Scholar 

  • Snyder JC, Teisanu RM, Stripp BR (2009) Endogenous lung stem cells and contribution to disease. J Pathol 217:254–264

    Article  PubMed  CAS  Google Scholar 

  • Sonstegard KS, Mailman RB, Cheek JM, Tomlin TE, DiAugustini RP (1982) Morphological and cytochemical characterization of neuroepithelial bodies in fetal rabbit lung. I. Studies of isolated neuroepithelial bodies. Exp Lung Res 3:349–377

    Article  PubMed  CAS  Google Scholar 

  • Sorhaug S, Steinshamn S, Munkvold B, Waldum HL (2008) Release of neuroendocrine products in the pulmonary circulation during intermittent hypoxia in isolated rat lung. Respir Physiol Neurobiol 162:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sorokin SP, Hoyt RF (1989) Neuroepithelial bodies and solitary small-granule cells. In: Massaro D (ed) Lung cell biology. Marcel Dekker, New York, pp 191–344

    Google Scholar 

  • Sorokin SP, Hoyt RF (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95

    Google Scholar 

  • Sorokin SP, Hoyt RF (1993) Proceedings of workshop on pulmonary neuroendocrine cells in health and disease. Anat Rec 236:1–256

    Article  Google Scholar 

  • Sorokin SP, Hoyt RF, Shaffer MJ (1997) Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech 37:43–61

    Article  PubMed  CAS  Google Scholar 

  • Soukhova G, Wang Y, Ahmed M, Walker JF, Yu J (2003) Bradykinin stimulates respiratory drive by activating pulmonary sympathetic afferents in the rabbit. J Appl Physiol 95:241–249

    PubMed  CAS  Google Scholar 

  • Speirs V, Cutz E (1993) An overview of culture and isolation methods suitable for in vitro studies on pulmonary neuroendocrine cells. Anat Rec 236:35–40

    Article  PubMed  CAS  Google Scholar 

  • Speirs V, Wang YV, Yeger H, Cutz E (1992) Isolation and culture of neuroendocrine cells from fetal rabbit lung using immunomagnetic techniques. Am J Respir Cell Mol Biol 6:63–67

    PubMed  CAS  Google Scholar 

  • Spencer H, Leof D (1964) The innervation of human lung. J Anat 98:599–609

    PubMed  CAS  Google Scholar 

  • Springall DR, Polak JM (1993) Calcitonin gene-related peptide and pulmonary hypertension in experimental hypoxia. Anat Rec 236:96–104

    Article  PubMed  CAS  Google Scholar 

  • Springall DR, Polak JM (1997) Quantitative microscopical methods for the identification and localisation of nerves and neuroendocrine cell markers in mammalian lung. Microsc Res Tech 37:92–100

    Article  PubMed  CAS  Google Scholar 

  • Springall DR, Cadieux A, Oliveira H, Su H, Rayston D, Polak JM (1987) Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst 20:155–166

    Article  PubMed  CAS  Google Scholar 

  • Springer J, Amadesi S, Trevisani M, Harrison S, Dinh QT, McGregor GP, Fisher A, Geppetti P, Groneberg DA (2004) Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept 118:127–134

    Article  PubMed  CAS  Google Scholar 

  • Stahlman MT, Gray ME (1984) Ontogeny of neuroendocrine cells in human fetal lung. I. An electron microscopic study. Lab Invest 51:449–463

    PubMed  CAS  Google Scholar 

  • Stahlman MT, Gray ME (1997) Immunogold EM localization of neurochemicals in human pulmonary neuroendocrine cells. Microsc Res Tech 37:77–91

    Article  PubMed  CAS  Google Scholar 

  • Stahlman MT, Jones M, Gray ME, Kasselberg AG, Vaughn WK (1987) Ontogeny of neuroendocrine cells in human fetal lung. III. An electron microscopic immunohistochemical study. Lab Invest 56:629–641

    PubMed  CAS  Google Scholar 

  • Stripp BR, Maxson K, Mera R, Singh G (1995) Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Physiol 269:L791–L799

    PubMed  CAS  Google Scholar 

  • Sullivan JP, Minna JD, Shay JW (2010) Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 29:61–72

    Article  PubMed  Google Scholar 

  • Tabassian AR, Nylen ES, Giron AE et al (1988) Evidence for cigarette smoke induced calcitonin secretion from lungs of man and hamster. Life Sci 42:2323–2329

    Article  PubMed  CAS  Google Scholar 

  • Tabassian AR, Snider RH, Nylen ES, Cassidy MM, Becker KL (1993) Heterogeneity studies of hamster calcitonin following acute exposure to cigarette smoke: evidence for a monomeric secretion. Anat Rec 236:253–256

    Article  PubMed  CAS  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research ? Neurosci Res 55:343–351

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  PubMed  CAS  Google Scholar 

  • Takemura M, Quarcoo D, Niimi A, Dinh QT, Geppetti P, Fischer A, Chung KF, Groneberg DA (2008) Is TRPV1 a useful target in respiratory diseases? Pulm Pharmacol Ther 21:833–839

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki J, Kanemura T, Kobayashi K, Sakai N, Takizawa T (1989) Effects of calcitonin gene-related peptide on airway epithelial functions in dogs. Peptides 10:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Terada M, Iwanaga T, Takahashi-Iwanaga H, Adachi I, Arakawa M, Fujita T (1992) Calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the tracheal epithelium of rats: an immunohistochemical study by means of whole mount preparations. Arch Histol Cytol 55:219–233

    Article  PubMed  CAS  Google Scholar 

  • Tjen-A-Looi S, Kraiczi H, Ekman R, Keith IM (1998) Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul Pept 74:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tsukiji J, Sango K, Udaka N, Kageyama H, Ito T, Saito H, Horie H, Inoue S, Kitamura H, Hagiwara E, Ikeda H, Okubo T, Ishigatsubo Y (2004) Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation. Life Sci 76:163–177

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Osamura RY, Watanabe K, Yanaihara N (1983) Simultaneous immunohistochemical localization of gastrin releasing peptide (GRP) and calcitonin (CT) in human bronchial endocrine-type cells. Virchows Arch A Pathol Anat Histopathol 400:163–171

    Article  PubMed  CAS  Google Scholar 

  • Uddman R, Luts A, Sundler F (1985) Occurrence and distribution of calcitonin gene-related peptide in the mammalian respiratory tract and middle ear. Cell Tissue Res 241:551–555

    Article  PubMed  CAS  Google Scholar 

  • Undem BJ, Chuaychoo B, Lee M-G, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556(3):905–917

    Article  PubMed  CAS  Google Scholar 

  • Urban C, Nirenberg A, Caparros B, Anac S, Cacavio A, Rosen G (1983) Chemical pleuritis as the cause of acute chest pain following high-dose methotrexate treatment. Cancer 51:34–37

    Article  PubMed  CAS  Google Scholar 

  • Van Genechten J, Brouns I, Scheuermann DW, Timmermans J-P, Adriaensen D (2003) Reduced number of intrinsic pulmonary nitrergic neurons in Fawn-Hooded rats as compared to control rat strains. Anat Rec 272A:446–453

    Article  CAS  Google Scholar 

  • Van Genechten J, Brouns I, Burnstock G, Timmermans J-P, Adriaensen D (2004) Quantification of neuroepithelial bodies and their innervation in Fawn-Hooded and Wistar rat lungs. Am J Respir Cell Mol Biol 30:20–30

    Article  PubMed  CAS  Google Scholar 

  • Van Lommel A, Lauweryns JM (1993a) Neuroepithelial bodies in the Fawn Hooded rat lung: morphological and neuroanatomical evidence for a sensory innervation. J Anat 183:553–566

    PubMed  Google Scholar 

  • Van Lommel AT, Lauweryns JM (1993b) Ultrastructure and innervation of neuroepithelial bodies in the lungs of newborn cats. Anat Rec 236:181–190

    Article  PubMed  Google Scholar 

  • Van Lommel A, Lauweryns JM (1997) Postnatal development of the pulmonary neuroepithelial bodies in various animal species. J Auton Nerv Syst 65:17–24

    Article  PubMed  Google Scholar 

  • Van Lommel A, Lauweryns JM, De Leyn P, Wouters P, Schreinemakers H, Lerut T (1995) Pulmonary neuroepithelial bodies in neonatal and adult dogs: histochemistry, ultrastructure, and effects of unilateral hilar lung denervation. Lung 173:13–23

    Article  PubMed  Google Scholar 

  • Van Lommel A, Lauweryns JM, Berthoud H-R (1998) Pulmonary neuroepithelial bodies are innervated by vagal afferent nerves: an investigation with in vivo anterograde Dil tracing and confocal microscopy. Anat Embryol 197:325–330

    Article  PubMed  Google Scholar 

  • Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16

    Article  PubMed  Google Scholar 

  • Van Lommel A, Bollé T, Hellings P (2009) Pulmonary neuroepithelial bodies as hypothetical immunomodulators: some new findings and a review of the literature. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science Publishers, Enfield, New Hampshire, pp 311–330

    Chapter  Google Scholar 

  • Van Ranst L (1989) Immunocytochemisch onderzoek van de intrapulmonale neuroepitheliale lichamen en hun bezenuwing bij verschillende zoogdieren. Doctoraatsproefschrift, Katholieke Universiteit Leuven

    Google Scholar 

  • Verástegui C, Fernandez-Vivero J, Prada A, Rodriguez F, Romero A, GonzalezMoreno M, deCastro JM (1997) Presence and distribution of 5HT-, VIP-, NPY-, and SP-immunoreactive structures in adult mouse lung. Histol Histopathol 12:909–918

    PubMed  Google Scholar 

  • Vicaut E, Laemmel E, Stucker O (2000) Impact of serotonin on tumour growth. Ann Med 32:187–194

    Article  PubMed  CAS  Google Scholar 

  • von Düring M, Andres KH, Iravani J (1974) The fine structure of the pulmonary stretch receptor in the rat. Z Anat Entwickl Gesch 143:215–222

    Article  Google Scholar 

  • Walsh C, McLelland J (1978) The development of the epithelium and its innervation in the avian extra-pulmonary respiratory tract. J Anat 125:171–182

    PubMed  CAS  Google Scholar 

  • Wang Y-Y, Cutz E (1993) Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: a light and electron microscopic immunohistochemical study. Anat Rec 236:198–205

    Article  PubMed  CAS  Google Scholar 

  • Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol 207:363–371

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-F, Yu J (2004) Structural survey of airway sensory receptors in rabbit using confocal microscopy. Acta Physiologica Sinica 56:119–129

    PubMed  Google Scholar 

  • Wang D, Yeger H, Cutz E (1996a) Expression of gastrin-releasing peptide receptor gene in developing lung. Am J Respir Cell Mol Biol 14:409–416

    PubMed  CAS  Google Scholar 

  • Wang D, Youngson CR, Wong V, Yeger H, Dinauer MC, Vega-Saenz ME, Rudy B, Cutz E (1996b) NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 93:13182–13187

    Article  PubMed  CAS  Google Scholar 

  • Wasano K (1977) Neuroepithelial bodies in the lung of rat and mouse. Arch Histol Jpn 40:207–219

    PubMed  Google Scholar 

  • Wasano K, Yamamoto T (1978) Monoamine-containing granulated cells in the frog lung. Cell Tissue Res 193:201–209

    Article  PubMed  CAS  Google Scholar 

  • Wasano K, Yamamoto T (1981) A scanning and transmission electron-microscopic study on neuroepithelial bodies in the neonatal mouse lung. Cell Tissue Res 216:481–490

    Article  PubMed  CAS  Google Scholar 

  • Webber SE, Lim JC, Widdicombe JG (1991) The effects of calcitonin gene-related peptide on submucosal gland secretion and epithelial albumin transport in the ferret trachea in vitro. Br J Pharmacol 102:79–84

    PubMed  CAS  Google Scholar 

  • Wedekind C (1997) Receptive properties of primary afferent fibers from rabbit pleura, in vitro. Somatosens Mot Res 14:229–236

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum M, Everett AW, Sparrow MP (1996) Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP9.5 and SV2. Am J Respir Cell Mol Biol 15:703–710

    PubMed  CAS  Google Scholar 

  • Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, Pearse AG (1978) Bombesin-like immunoreactivity in the lung. Nature 273:769–770

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe JG (2001) Airway receptors. Respir Physiol 125:3–15

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe J (2006) Reflexes from the lungs and airways: historical perspective. J Appl Physiol 101:628–634

    Article  PubMed  Google Scholar 

  • Widdicombe J (2009) Lung afferent activity: implications for respiratory sensation. Respir Physiol Neurobiol 167:2–8

    Article  PubMed  Google Scholar 

  • Widdicombe J, Nadel JA (1963a) Reflex effects of lung inflation on thracheal volume. J Appl Physiol 18:681–686

    PubMed  CAS  Google Scholar 

  • Widdicombe JG, Nadel JA (1963b) Airway volume, airway resistance, and work and force of breathing: theory. J Appl Physiol 18:863–868

    PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504

    Article  PubMed  CAS  Google Scholar 

  • Will JA, Keith IM, Buckner CK, Chacko J, Olson EBJ, Weir EK (1984) Serotonin and the pulmonary circulation. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 137–154

    Google Scholar 

  • Wong AP, Keating A, Waddell TK (2009) Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 11:676–687

    Article  PubMed  CAS  Google Scholar 

  • Wu S-X, Koshimizu Y, Feng Y-P, Okamoto K, Fujiyama F, Hioki H, Li Y-Q, Kaneko T, Mizuno N (2004) Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Res 1011:247–251

    Article  PubMed  CAS  Google Scholar 

  • Yabumoto Y, Watanabe M, Ito Y, Maemura K, Otsuki Y, Nakamura Y, Yanagawa Y, Obata K, Watanabe K (2008) Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 41:20–27

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Atoji Y, Suzuki Y (1999) Calretinin immunoreactive nerve endings in the trachea and bronchi of the rat. J Vet Med Sci 61:267–269

    Article  PubMed  CAS  Google Scholar 

  • Yeger H, Pan J, Fu XW, Bear C, Cutz E (2001) Expression of CFTR and Cl- conductances in cells of pulmonary neuroepithelial bodies. Am J Physiol Lung Cell Mol Physiol 281:L713–L721

    PubMed  CAS  Google Scholar 

  • Yoo SH, Huh YH, Hur YS (2010) Inositol 1,4,5-Trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 30:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–155

    Article  PubMed  CAS  Google Scholar 

  • Youngson C, Nurse C, Yeger H, Curnutte JT, Vollmer C, Wong V, Cutz E (1997) Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells. Microsc Res Tech 37:101–106

    Article  PubMed  CAS  Google Scholar 

  • Yu J (2009) Airway receptors and their reflex function. In: Gonzalez C, Peers C, Nurse CA (eds) Arterial Chemoreceptors. pp 411–420

    Google Scholar 

  • Yu J, Wang YF, Zhang JW (2003) Structure of slowly adapting pulmonary stretch receptors in the lung periphery. J Appl Physiol 95:385–393

    PubMed  CAS  Google Scholar 

  • Yu J, Zhang JW, Wang YF, Fan F, Yu A (2004) Neuroepithelial bodies not connected to pulmonary slowly adapting stretch receptors. Respir Physiol Neurobiol 144:1–14

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Lin XS, Zhang JWWJ (2006) Pulmonary nociceptors are potentially connected with neuroepithelial bodies. In: The arterial chemoreceptors. Springer, pp 301–306.

    Google Scholar 

  • Zhang JW, Walker JF, Guardiola J, Yu J (2006) Pulmonary sensory and reflex responses in the mouse. J Appl Physiol 101:986–992

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Sprunger KL, Simasko MS (2010) Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat. Am J Physiol Gastrointest Liver Physiol 298:212–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Brouns .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brouns, I., Pintelon, I., Timmermans, JP., Adriaensen, D. (2012). Morphologically Identified Sensory Receptor End-Organs in the Airways, Lungs and Visceral Pleura. In: Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors. Advances in Anatomy, Embryology and Cell Biology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22772-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22772-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22771-4

  • Online ISBN: 978-3-642-22772-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics