Skip to main content

Advertisement

Log in

Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain, is also located in many peripheral nonneuronal tissues. The glutamate decarboxylase 67-green fl uorescent protein (GAD67-GFP) knock-in mouse is a useful model for studying the distribution of GABAergic cells in many tissues and organs. The lungs of these mice contain cells with an intense GFP signal exclusively in the airway epithelium. We aimed to characterize the GFP-positive cells and to clarify their relationship with the GABAergic system. We identified the GFPpositive cells as pulmonary neuroendocrine cells (PNECs) by immunohistochemistry for the protein gene product 9.5 and calcitonin gene-related peptide and by ultrastructural analysis. Immunohistochemistry for GADs and GABA revealed GAD65/67 and GABA in GFP-positive PNECs. Reverse transcription-polymerase chain reaction analyses revealed mRNAs encoding the GABAB receptor subunits necessary for the assembly of functional receptors, R1 and R2, in the lung. GABAB receptor subunit R1 and R2 proteins were expressed in many airway epithelial cells including alveolar epithelial cells other than GFP-positive PNECs. The present findings demonstrated that PNECs in the airway epithelium have a GABA production system and indicated that GABA plays functional roles in airway epithelial cells through GABAB receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213:1–47

    Article  PubMed  CAS  Google Scholar 

  2. Huang WM, Reed-Fourquet L, Wu E, Wu JY (1990) Molecular cloning and amino acid sequence of brain L-glutamate decarboxylase. Proc Natl Acad Sci U S A 87:8491–8495

    Article  PubMed  CAS  Google Scholar 

  3. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  PubMed  CAS  Google Scholar 

  4. Abe H, Yanagawa Y, Kanbara K, Maemura K, Hayasaki H, Azuma H, Obata K, Katsuoka Y, Yabumoto M, Watanabe M (2005) Epithelial localization of green fluorescent protein-positive cells in epididymis of the GAD67-GFP knock-in mouse. J Androl 26:568–577

    Article  PubMed  CAS  Google Scholar 

  5. Maemura K, Yanagawa Y, Obata K, Dohi T, Egashira Y, Shibayama Y, Watanabe M (2006) Antigen presenting cells expressing glutamate decarboxylase 67 were identified as epithelial cells in glutamate decarboxylase 67-GFP knock-in mouse thymus. Tissue Antigens 67:198–206

    Article  PubMed  CAS  Google Scholar 

  6. Jin N, Narasaraju T, Kolliiputi N, Chen J, Liu L (2005) Differential expression of GABAA receptor π subunit in cultured rat alveolar epithelial cells. Cell Tissue Res 321:173–183

    Article  PubMed  CAS  Google Scholar 

  7. Sakai K, Miyazaki JA (1997) A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. J Biochem Biophys Res Commun 237: 318–324

    Article  CAS  Google Scholar 

  8. Lauweryns JM, van Rast L (1988) Protein gene product expression in the lung of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves. Neurosci Lett 85:311–316

    Article  PubMed  CAS  Google Scholar 

  9. Polak JM (1993) Lung endocrine cell markers, peptides, and amines. Anat Rec 231:169–171

    Article  Google Scholar 

  10. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol9:409–414

    Article  PubMed  CAS  Google Scholar 

  11. Tamayama T, Maemura K, Kanbara K, Hayasaki H, Yabumoto Y, Yuasa M, Watanabe M (2005) Expression of GABAA and GABAB receptors in rat growth plate chondrocytes: Activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol Cell Biochem 273:117–126

    Article  PubMed  CAS  Google Scholar 

  12. Shibata M, Miwa Y, Morimoto J, Otsuki Y (2007) Easy stable transfection of a human cancer cell line by electrogene transfer with an Epstein-Barr virus-based plasmid vector. Med Mol Morphol 40:103–107

    Article  PubMed  Google Scholar 

  13. Lauweryns JM, Seldeslagh KA (1991) Calcitonin and calcitonin gene-related peptide immunoreactivity and colocalization in newborn cat lung. Regul Peptides 36:183–196

    Article  CAS  Google Scholar 

  14. Williams PT (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, New York, pp 1664–1673

    Google Scholar 

  15. Peake JL, Reynolds SD, Stripp BR, Stephens KE, Pinkerton K (2000) Alteration of pulmonary neuroendocrine cells during epithelial repair of naphthalene-induced airway injury. Am J Pathol 156:279–286

    PubMed  CAS  Google Scholar 

  16. Ito T (1999) Differentiation and proliferation of pulmonary neuroendocrine cells. Prog Histochem Cytochem 34:247–322

    PubMed  CAS  Google Scholar 

  17. Weichselbaum M, Sparrow MP, Hamilton EJ, Thompson PJ, Knight DA (2005) A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium. Respir Res 6:115–125

    Article  PubMed  CAS  Google Scholar 

  18. Scheuermann DW (1997) Comparative histology of pulmonary neuroendocrine cell system in mammalian lungs. Microsc Res Tech 37:31–42

    Article  PubMed  CAS  Google Scholar 

  19. Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16

    Article  PubMed  Google Scholar 

  20. Gosney JR (1997) Pulmonary neuroendocrine cell system in pediatric and adult lung disease. Microsc Res Tech 37:107–113

    Article  PubMed  CAS  Google Scholar 

  21. Reynolds SD, Giangreco A, Power JH, Stripp BH (2000) Neuroepithelial bodies of pulmonary airways serve as reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156: 269–278

    PubMed  CAS  Google Scholar 

  22. Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature (Lond) 365:153–155

    Article  CAS  Google Scholar 

  23. Wang D, Youngson C, Wong V, Yeger H, Dinauer MC, Vega-Saenz de Miera E, Rudy B, Cutz E (1996) NADPH-oxidase and a hydrogen peroxide-sensitive K channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci U S A 93: 13182–13187

    Article  PubMed  CAS  Google Scholar 

  24. Van Lommel A (2001) Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev 2:171–176

    Article  PubMed  Google Scholar 

  25. Hoyt RF Jr, McNelly NA, McDowell EM, Sorokin SP (1991) Neuroepithelial bodies stimulate proliferation of airway epithelium in fetal hamster lung. Am J Physiol 260:L234–L240

    PubMed  Google Scholar 

  26. Sunday ME, Hua J, Reyes B, Masui H, Torday JS (1993) Antibombesin monoclonal antibodies modulate fetal mouse lung growth and maturation in utero and in organ cultures. Anat Rec 236:25–32

    Article  PubMed  CAS  Google Scholar 

  27. Adnot S, Cigarini I, Herigault R, Harf A (1990) Effects of substance P and calcitonin gene-related peptide on pulmonary circulation. J Appl Physiol 70:1707–1712

    Google Scholar 

  28. Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, Fan Y, Kelly MM, Ye B, Orser B, O’Byrne PM, Inman MD, Yang X, Lu WY (2007) A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 13:862–867

    Article  PubMed  CAS  Google Scholar 

  29. Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG (1988) Structural and functional bases for GABAA receptor heterogeneity. Nature (Lond) 335:76–79

    Article  CAS  Google Scholar 

  30. Kaupmann K, Malitschek B, Schuler V, Heid J, Huggel K, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature (Lond) 396: 683–687

    Article  CAS  Google Scholar 

  31. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABAB receptors function as a heteromeric assembly of the subunits GABAB1 and GABAB2. Nature (Lond) 396:674–679

    Article  CAS  Google Scholar 

  32. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodi merization is required for the formation of a functional GABAB receptor. Nature (Lond) 396:679–682

    Article  CAS  Google Scholar 

  33. Kunner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77

    Article  Google Scholar 

  34. Shirakawa J, Taniyama K, Tanaka C (1987) γ-Aminobutyric acidinduced modulation of acetylcholine release from the guinea pig lung. J Pharmacol Exp Ther 243:364–369

    PubMed  CAS  Google Scholar 

  35. Tamaoki J, Graf PD, Nadel JA (1987) Effect of γ-aminobutyric acid on neurally mediated contraction of guinea pig trachealis smooth muscle. J Pharmacol Exp Ther 243:86–90

    PubMed  CAS  Google Scholar 

  36. Belvisi MG, Ichinose M, Barnes PJ (1989) Modulation of non-adrenergic, non-cholinergic neural bronchoconstriction in guineapig airway via GABAb-receptors. Br J Pharmacol 97:1225–1231

    PubMed  CAS  Google Scholar 

  37. Dicpinigaitis PV, Spungen AM, Bauman WA, Absgarten A, Almenoff PL (1994) Inhibition of bronchial hyperresponsiveness by the GABA-agonist baclofen. Chest 106:758–761

    Article  PubMed  CAS  Google Scholar 

  38. Tohda Y, Ohkawa K, Kubo H, Muraki M, Fukuoka M, Nakajima S (1998) Role of GABA receptors in the bronchial response: studies in sensitized guinea-pigs. Clin Exp Allergy 28:772–777

    Article  PubMed  CAS  Google Scholar 

  39. Cunningham MD, Enna SJ (1996) Evidence for pharmacologically distinct GABAB receptor associated with cAMP production in rat brain. Brain Res 720:220–224

    Article  PubMed  CAS  Google Scholar 

  40. Couve A, Moss SJ, Pangalos MN (2000) GABAB receptors: a new paradigm in G protein signalling. Mol Cell Neurosci 16:296–312

    Article  PubMed  CAS  Google Scholar 

  41. Onali P, Mascia FM, Olianas MC (2003) Positive regulation of GABAB receptors dually coupled to cyclic AMP by the allosteric agent CGP7930. Eur J Pharmacol 471:77–84

    Article  PubMed  CAS  Google Scholar 

  42. Fujimori S, Hinoi E, Yoneda Y (2002) Functional GABAB receptors expressed in cultured calvarial osteoblasts. Biochem Biophys Res Commun 293:1445–1452

    Article  PubMed  CAS  Google Scholar 

  43. Kanbara K, Okamoto K, Nomura S, Kaneko T, Shigemoto R, Azuma H, Katsuoka Y, Watanabe M (2005) Cellular localization of GABA and GABAB receptor subunit proteins during spermiogenesis in rat testis. J Androl 26:485–493

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabumoto, Y., Watanabe, M., Ito, Y. et al. Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 41, 20–27 (2008). https://doi.org/10.1007/s00795-007-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-007-0391-6

Key words

Navigation