Skip to main content

Advertisement

Log in

Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The discovery of rare tumor cells with stem cell features first in leukemia and later in solid tumors has emerged as an important area in cancer research. It has been determined that these stem-like tumor cells, termed cancer stem cells, are the primary cellular component within a tumor that drives disease progression and metastasis. In addition to their stem-like ability to self-renew and differentiate, cancer stem cells are also enriched in cells resistant to conventional radiation therapy and to chemotherapy. The immediate implications of this new tumor growth paradigm not only require a re-evaluation of how tumors are initiated, but also on how tumors should be monitored and treated. However, despite the relatively rapid pace of cancer stem cell research in solid tumors such as breast, brain, and colon cancers, similar progress in lung cancer remains hampered in part due to an incomplete understanding of lung epithelial stem cell hierarchy and the complex heterogeneity of the disease. In this review, we provide a critical summary of what is known about the role of normal and malignant lung stem cells in tumor development, the progress in characterizing lung cancer stem cells and the potential for therapeutically targeting pathways of lung cancer stem cell self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    PubMed  CAS  Google Scholar 

  2. Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111–1115.

    PubMed  CAS  Google Scholar 

  3. Wicha, M. S., Liu, S. L., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66(4), 1883–1890.

    PubMed  CAS  Google Scholar 

  4. Passegue, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.

    PubMed  CAS  Google Scholar 

  5. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    PubMed  CAS  Google Scholar 

  6. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    PubMed  CAS  Google Scholar 

  7. Costello, R. T., et al. (2000). Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 60(16), 4403–4411.

    PubMed  CAS  Google Scholar 

  8. Wulf, G. G., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98(4), 1166–1173.

    PubMed  CAS  Google Scholar 

  9. Misaghian, N., et al. (2009). Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia, 23(1), 25–42.

    PubMed  CAS  Google Scholar 

  10. Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    PubMed  CAS  Google Scholar 

  11. Ponti, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.

    PubMed  CAS  Google Scholar 

  12. Patrawala, L., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.

    PubMed  CAS  Google Scholar 

  13. Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    PubMed  CAS  Google Scholar 

  14. O'Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    PubMed  Google Scholar 

  15. Li, C. W., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

    PubMed  CAS  Google Scholar 

  16. Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.

    PubMed  CAS  Google Scholar 

  17. Minna, J. D., Roth, J. A., & Gazdar, A. F. (2002). Focus on lung cancer. Cancer Cell, 1(1), 49–52.

    PubMed  CAS  Google Scholar 

  18. Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.

    Google Scholar 

  19. Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7(10), 778–790.

    PubMed  CAS  Google Scholar 

  20. Knight, D. A., & Holgate, S. T. (2003). The airway epithelium: structural and functional properties in health and disease. Respirology, 8(4), 432–446.

    PubMed  Google Scholar 

  21. Mercer, B. A., et al. (2006). The epithelial cell in lung health and emphysema pathogenesis. Current Respiratory Medicine Revue, 2(2), 101–142.

    CAS  Google Scholar 

  22. Bowden, D. H. (1983). Cell turnover in the lung. American Review of Respiratory Disease, 128(2 Pt 2), S46–S48.

    PubMed  CAS  Google Scholar 

  23. Kauffman, S. L. (1980). Cell proliferation in the mammalian lung. International Review of Experimental Pathology, 22, 131–191.

    PubMed  CAS  Google Scholar 

  24. Rawlins, E. L., & Hogan, B. L. (2008). Ciliated epithelial cell lifespan in the mouse trachea and lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(1), L231–L234.

    PubMed  CAS  Google Scholar 

  25. Giangreco, A., et al. (2009). Stem cells are dispensable for lung homeostasis but restore airways after injury. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9286–9291.

    PubMed  CAS  Google Scholar 

  26. Rawlins, E. L., & Hogan, B. L. (2006). Epithelial stem cells of the lung: privileged few or opportunities for many? Development, 133(13), 2455–2465.

    PubMed  CAS  Google Scholar 

  27. Evans, M. J., et al. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Experimental Lung Research, 27(5), 401–415.

    PubMed  CAS  Google Scholar 

  28. Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1998). Number and proliferation of basal and parabasal cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 157(6 Pt 1), 2000–2006.

    PubMed  CAS  Google Scholar 

  29. Schoch, K. G., et al. (2004). A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L631–L642.

    PubMed  CAS  Google Scholar 

  30. Nakajima, M., et al. (1998). Immunohistochemical and ultrastructural studies of basal cells, Clara cells and bronchiolar cuboidal cells in normal human airways. Pathology International, 48(12), 944–953.

    PubMed  CAS  Google Scholar 

  31. Donnelly, G. M., Haack, D. G., & Heird, C. S. (1982). Tracheal epithelium: cell kinetics and differentiation in normal rat tissue. Cell and Tissue Kinetics, 15(2), 119–130.

    PubMed  CAS  Google Scholar 

  32. Breuer, R., et al. (1990). Cell kinetics of normal adult hamster bronchial epithelium in the steady state. American Journal of Respiratory Cell and Molecular Biology, 2(1), 51–58.

    PubMed  CAS  Google Scholar 

  33. Rawlins, E. L. (2008). Lung epithelial progenitor cells: lessons from development. Proceedings of the American Thorac Society, 5(6), 675–681.

    Google Scholar 

  34. Hong, K. U., et al. (2004). In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L643–L649.

    PubMed  CAS  Google Scholar 

  35. Hong, K. U., et al. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. American Journal of Pathology, 164(2), 577–588.

    PubMed  CAS  Google Scholar 

  36. Hajj, R., et al. (2007). Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells, 25(1), 139–148.

    PubMed  CAS  Google Scholar 

  37. Randell, S. H., et al. (1991). Properties of rat tracheal epithelial cells separated based on expression of cell surface alpha-galactosyl end groups. American Journal of Respiratory Cell and Molecular Biology, 4(6), 544–554.

    PubMed  CAS  Google Scholar 

  38. Rock, J. R., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12771–12775.

    PubMed  CAS  Google Scholar 

  39. Barth, P. J., et al. (2000). Proliferation and number of Clara cell 10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal, hyperplastic and metaplastic bronchial mucosa. Virchows Archiv, 437(6), 648–655.

    PubMed  CAS  Google Scholar 

  40. Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1999). Number and proliferation of clara cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 159(5 Pt 1), 1585–1591.

    PubMed  CAS  Google Scholar 

  41. Buckpitt, A., et al. (1995). Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular Pharmacology, 47(1), 74–81.

    PubMed  CAS  Google Scholar 

  42. Stripp, B. R., et al. (1995). Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. American Journal of Physiology, 269(6 Pt 1), L791–L799.

    PubMed  CAS  Google Scholar 

  43. Stevens, T. P., et al. (1997). Cell proliferation contributes to PNEC hyperplasia after acute airway injury. American Journal of Physiology, 272(3 Pt 1), L486–L493.

    PubMed  CAS  Google Scholar 

  44. Reynolds, S. D., et al. (2000). Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. American Journal of Pathology, 156(1), 269–278.

    PubMed  CAS  Google Scholar 

  45. Reynolds, S. D., et al. (2000). Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278(6), L1256–L1263.

    PubMed  CAS  Google Scholar 

  46. Hong, K. U., et al. (2001). Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. American Journal of Respiratory Cell and Molecular Biology, 24(6), 671–681.

    PubMed  CAS  Google Scholar 

  47. Simon, M., Argiris, A., & Murren, J. R. (2004). Progress in the therapy of small cell lung cancer. Critical Reviews in Oncology/hematology, 49(2), 119–133.

    PubMed  Google Scholar 

  48. Turrisi, A. T., & Sherman, C. A. (2002). The treatment of limited small cell lung cancer: a report of the progress made and future prospects. European Journal of Cancer, 38(2), 279–291.

    PubMed  CAS  Google Scholar 

  49. Watkins, D. N., et al. (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 422(6929), 313–317.

    PubMed  CAS  Google Scholar 

  50. Giangreco, A., Groot, K. R., & Janes, S. M. (2007). Lung cancer and lung stem cells - Strange bedfellows? American Journal of Respiratory and Critical Care Medicine, 175(6), 547–553.

    PubMed  Google Scholar 

  51. Adamson, I. Y., & Bowden, D. H. (1975). Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Laboratory Investigation, 32(6), 736–745.

    PubMed  CAS  Google Scholar 

  52. Evans, M. J., et al. (1975). Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Experimental and Molecular Pathology, 22(1), 142–150.

    PubMed  CAS  Google Scholar 

  53. Buckley, S., et al. (1998). Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. American Journal of Physiology, 274(5 Pt 1), L714–L720.

    PubMed  CAS  Google Scholar 

  54. Reddy, R., et al. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L658–L667.

    PubMed  CAS  Google Scholar 

  55. Giangreco, A., Reynolds, S. D., & Stripp, B. R. (2002). Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. American Journal of Pathology, 161(1), 173–182.

    PubMed  Google Scholar 

  56. Kim, C. F., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.

    PubMed  CAS  Google Scholar 

  57. Jackson, E. L., et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes and Development, 15(24), 3243–3248.

    PubMed  CAS  Google Scholar 

  58. Fisher, G. H., et al. (2001). Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes and Development, 15(24), 3249–3262.

    PubMed  CAS  Google Scholar 

  59. Politi, K., et al. (2006). Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes and Development, 20(11), 1496–1510.

    PubMed  CAS  Google Scholar 

  60. Carney, D. N., Gazdar, A. F., & Minna, J. D. (1980). Positive correlation between histological tumor involvement and generation of tumor cell colonies in agarose in specimens taken directly from patients with small-cell carcinoma of the lung. Cancer Research, 40(6), 1820–1823.

    PubMed  CAS  Google Scholar 

  61. Carney, D. N., et al. (1982). Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells, 1(3), 149–164.

    PubMed  CAS  Google Scholar 

  62. Gazdar, A. F., et al. (1981). Heterotransplantation of small-cell carcinoma of the lung into nude mice: comparison of intracranial and subcutaneous routes. International Journal of Cancer, 28(6), 777–783.

    CAS  Google Scholar 

  63. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.

    PubMed  CAS  Google Scholar 

  64. Goodell, M. A., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.

    PubMed  CAS  Google Scholar 

  65. Zhou, S., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.

    PubMed  CAS  Google Scholar 

  66. Hirschmann-Jax, C., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.

    PubMed  CAS  Google Scholar 

  67. Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.

    PubMed  CAS  Google Scholar 

  68. Patrawala, L., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.

    PubMed  CAS  Google Scholar 

  69. Feuring-Buske, M., & Hogge, D. E. (2001). Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood, 97(12), 3882–3889.

    PubMed  CAS  Google Scholar 

  70. Szotek, P. P., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.

    PubMed  CAS  Google Scholar 

  71. Ho, M. M., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833.

    PubMed  CAS  Google Scholar 

  72. Zhong, Y., et al. (2007). Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342. Biochemical and Biophysical Research Communications, 364(2), 338–343.

    PubMed  CAS  Google Scholar 

  73. Platet, N., et al. (2007). Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Letters, 581(7), 1435–1440.

    PubMed  CAS  Google Scholar 

  74. Montanaro, F., et al. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 298(1), 144–154.

    PubMed  CAS  Google Scholar 

  75. Wu, C., & Alman, B. A. (2008). Side population cells in human cancers. Cancer Letters, 268(1), 1–9.

    PubMed  CAS  Google Scholar 

  76. Mizrak, D., Brittan, M., & Alison, M. R. (2008). CD133: molecule of the moment. Journal of Pathology, 214(1), 3–9.

    PubMed  CAS  Google Scholar 

  77. Yin, A. H., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

    PubMed  CAS  Google Scholar 

  78. Uchida, N., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14720–14725.

    PubMed  CAS  Google Scholar 

  79. Ghods, A. J., et al. (2007). Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells, 25(7), 1645–1653.

    PubMed  CAS  Google Scholar 

  80. Lee, J., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.

    PubMed  CAS  Google Scholar 

  81. Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16281–16286.

    PubMed  CAS  Google Scholar 

  82. Levina, V., et al. (2008). Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE, 3(8), e3077.

    PubMed  Google Scholar 

  83. Meng, X., et al. (2009). Both CD133+ and CD133− subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Science, 100(6), 1040–1046.

    PubMed  CAS  Google Scholar 

  84. Howard, B. M., & Boockvar, J. A. (2008). Stem cell marker CD133 expression predicts outcome in glioma patients. Neurosurgery, 62(6), N8.

    Google Scholar 

  85. Salnikov, A. V., et al. (2009). CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. International Journal of Cancer, 126, 950–958.

    Google Scholar 

  86. Tirino, V., et al. (2009). The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. European Journal of Cardio-Thoracic Surgery, 36(3), 446–453.

    PubMed  Google Scholar 

  87. Wang, J., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 122(4), 761–768.

    CAS  Google Scholar 

  88. Shmelkov, S. V., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 118(6), 2111–2120.

    PubMed  CAS  Google Scholar 

  89. Bidlingmaier, S., Zhu, X., & Liu, B. (2008). The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. Journal of Molecular Medicine, 86(9), 1025–1032.

    PubMed  CAS  Google Scholar 

  90. Moreb, J., et al. (1996). Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Therapy, 3(1), 24–30.

    PubMed  CAS  Google Scholar 

  91. Chute, J. P., et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(31), 11707–11712.

    PubMed  CAS  Google Scholar 

  92. Chute, J. P., et al. (2005). Modulation of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Blood, 106(11), 488a.

    Google Scholar 

  93. Pearce, D. J., & Bonnet, D. (2007). The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology, 35(9), 1437–1446.

    PubMed  CAS  Google Scholar 

  94. Cheung, A. M., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21(7), 1423–1430.

    PubMed  CAS  Google Scholar 

  95. Pearce, D. J., et al. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23(6), 752–760.

    PubMed  CAS  Google Scholar 

  96. Bar, E. E., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells, 25(10), 2524–2533.

    PubMed  CAS  Google Scholar 

  97. Ginestier, C., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567.

    PubMed  CAS  Google Scholar 

  98. Huang, E. H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic Stem Cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.

    PubMed  CAS  Google Scholar 

  99. Chen, Y. C., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385(3), 307–313.

    PubMed  CAS  Google Scholar 

  100. Patel, M., et al. (2008). ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer, 59(3), 340–349.

    PubMed  Google Scholar 

  101. Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338.

    PubMed  CAS  Google Scholar 

  102. Moreb, J. S., et al. (2008). ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer, 7, 87.

    PubMed  Google Scholar 

  103. Moreb, J. S., et al. (2007). Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by aldefluor flow cytometry-based assay. Cytometry Part B-Clinical Cytometry, 72B(4), 281–289.

    CAS  Google Scholar 

  104. Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23(43), 7274–7282.

    PubMed  CAS  Google Scholar 

  105. Kirstetter, P., et al. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 7(10), 1048–1056.

    PubMed  CAS  Google Scholar 

  106. Reya, T., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409–414.

    PubMed  CAS  Google Scholar 

  107. Stripp, B. R., & Reynolds, S. D. (2008). Maintenance and repair of the bronchiolar epithelium. Proceedings of the American Thoracic Society, 5(3), 328–333.

    PubMed  Google Scholar 

  108. Reynolds, S. D., et al. (2008). Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells, 26(5), 1337–1346.

    PubMed  CAS  Google Scholar 

  109. Zemke, A. C., et al. (2009). beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 41(5), 535–543.

    PubMed  CAS  Google Scholar 

  110. Lemjabbar-Alaoui, H., et al. (2006). Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE, 1, e93.

    PubMed  Google Scholar 

  111. Uematsu, K., et al. (2003). Wnt pathway activation in mesothelioma: evidence of dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Research, 63(15), 4547–4551.

    PubMed  CAS  Google Scholar 

  112. Uematsu, K., et al. (2003). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene, 22(46), 7218–7221.

    PubMed  CAS  Google Scholar 

  113. You, L., et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene, 23(36), 6170–6174.

    PubMed  CAS  Google Scholar 

  114. Shi, Y., et al. (2007). Inhibition of Wnt-2 and galectin-3 synergistically destabilizes beta-catenin and induces apoptosis in human colorectal cancer cells. International Journal of Cancer, 121(6), 1175–1181.

    CAS  Google Scholar 

  115. You, L., et al. (2004). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Research, 64(15), 5385–5389.

    PubMed  CAS  Google Scholar 

  116. Daniel, V. C., Peacock, C. D., & Watkins, D. N. (2006). Developmental signalling pathways in lung cancer. Respirology, 11(3), 234–240.

    PubMed  Google Scholar 

  117. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.

    PubMed  CAS  Google Scholar 

  118. Litingtung, Y., et al. (1998). Sonic hedgehog is essential to foregut development. Nature Genetics, 20(1), 58–61.

    PubMed  CAS  Google Scholar 

  119. Pepicelli, C. V., Lewis, P. M., & McMahon, A. P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology, 8(19), 1083–1086.

    PubMed  CAS  Google Scholar 

  120. Bellusci, S., et al. (1997). Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development, 124(1), 53–63.

    PubMed  CAS  Google Scholar 

  121. Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835), 349–354.

    PubMed  CAS  Google Scholar 

  122. Nilsson, M., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.

    PubMed  CAS  Google Scholar 

  123. Goodrich, L. V., & Scott, M. P. (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6), 1243–1257.

    PubMed  CAS  Google Scholar 

  124. Vestergaard, J., et al. (2006). Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer, 52(3), 281–290.

    PubMed  Google Scholar 

  125. Chi, S., et al. (2006). Activation of the hedgehog pathway in a subset of lung cancers. Cancer Letters, 244(1), 53–60.

    PubMed  CAS  Google Scholar 

  126. Zhao, C., et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 458(7239), 776–779.

    PubMed  CAS  Google Scholar 

  127. Peacock, C. D., et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4048–4053.

    PubMed  CAS  Google Scholar 

  128. Liu, S., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66(12), 6063–6071.

    PubMed  CAS  Google Scholar 

  129. Tremblay, M. R., et al. (2009). Recent patents for Hedgehog pathway inhibitors for the treatment of malignancy. Expert Opinion on Therapeutic Patents, 19(8), 1039–1056.

    PubMed  CAS  Google Scholar 

  130. Hyman, J. M., et al. (2009). Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14132–14137.

    PubMed  CAS  Google Scholar 

  131. Dlugosz, A. A., & Talpaz, M. (2009). Following the hedgehog to new cancer therapies. New England Journal of Medicine, 361(12), 1202–1205.

    PubMed  CAS  Google Scholar 

  132. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.

    PubMed  CAS  Google Scholar 

  133. Collins, B. J., Kleeberger, W., & Ball, D. W. (2004). Notch in lung development and lung cancer. Seminars in Cancer Biology, 14(5), 357–364.

    PubMed  CAS  Google Scholar 

  134. Ito, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.

    PubMed  CAS  Google Scholar 

  135. Borges, M., et al. (1997). An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature, 386(6627), 852–855.

    PubMed  CAS  Google Scholar 

  136. Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.

    PubMed  CAS  Google Scholar 

  137. Tsao, P. N., et al. (2008). Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. Journal of Biological Chemistry, 283(43), 29532–29544.

    PubMed  CAS  Google Scholar 

  138. Dang, T. P., et al. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22(13), 1988–1997.

    PubMed  CAS  Google Scholar 

  139. Konishi, J., et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057.

    PubMed  CAS  Google Scholar 

  140. Haruki, N., et al. (2005). Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Research, 65(9), 3555–3561.

    PubMed  CAS  Google Scholar 

  141. Zheng, Q., et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports, 17(4), 847–852.

    PubMed  CAS  Google Scholar 

  142. Fan, X., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66(15), 7445–7452.

    PubMed  CAS  Google Scholar 

  143. Hoey, T., et al. (2009). DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell, 5(2), 168–177.

    PubMed  CAS  Google Scholar 

  144. Jiang, T. Y., et al. (2009). Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Research, 69(3), 845–854.

    PubMed  CAS  Google Scholar 

  145. Hill, R. P. (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Research, 66(4), 1891–1895. discussion 1890.

    PubMed  CAS  Google Scholar 

  146. Kern, S. E., & Shibata, D. (2007). The fuzzy math of solid tumor stem cells: a perspective. Cancer Research, 67(19), 8985–8988.

    PubMed  CAS  Google Scholar 

  147. Kelly, P. N., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.

    PubMed  CAS  Google Scholar 

  148. Quintana, E., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.

    PubMed  CAS  Google Scholar 

  149. Li, Z., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.

    PubMed  CAS  Google Scholar 

  150. Heddleston, J. M., et al. (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 8(20), 3274–3284.

    PubMed  Google Scholar 

  151. Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.

    PubMed  CAS  Google Scholar 

  152. Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.

    PubMed  CAS  Google Scholar 

  153. Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This publication was supported in part by Grant NNJ05HD36G and NNX09AU95G from the National Aeronautic and Space Administration (NASA). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NASA. We also acknowledge NCI Lung Cancer SPORE P50CA70907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Shay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, J.P., Minna, J.D. & Shay, J.W. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 29, 61–72 (2010). https://doi.org/10.1007/s10555-010-9216-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9216-5

Keywords

Navigation