Skip to main content

Genetics of Whole Plant Morphology and Architecture

  • Chapter
  • First Online:
The Barley Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Plant architectural features directly impact plant fitness and adaptation, and traits related to plant morphology and development represent important targets for crop breeding. Decades of mutagenesis research have provided a wealth of mutant resources, making barley (Hordeum vulgare L.) an interesting model for genetic dissection of grass morphology and architecture. Recent advances in genomics have propelled the identification of barley genes controlling different aspects of shoot and root development. In addition to gene discovery, it is important to understand the interplay between different developmental processes in order to support breeding of improved ideotypes for sustainable barley production under different climatic conditions. The purpose of the present chapter is to: (i) provide an overview of the morphology and development of shoot and root structures in barley; (ii) discuss novel insights into the genetic, molecular and hormonal mechanisms regulating root and shoot development and architecture; and (iii) highlight the genetic and physiological interactions among organs and traits with special focus on correlations between leaf and tiller development, flowering and tillering, as well as row-type and tillering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MW (1967) Basis of yield components compensation in crop plants with special reference to field bean (Phaseolus vulgaris L.). Crop Sci 7(5):505–510

    Article  Google Scholar 

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19(2):458–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alqudah AM, Koppulu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Well DM, Bennett MJ (2014) Branching out in roots: uncovering form, function, and regulation. Plant Physiol 166(2):538–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alqudah AM, Sharma R, Pasam RK, Graner A, Kilian B, Schnurbusch T (2014) Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One 9(11):e113120

    Google Scholar 

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106(5):846–857

    Article  PubMed  CAS  Google Scholar 

  • Balzan S, Johal GS, Carraro N (2014) The role of auxin transporters in monocots development. Front Plant Sci 5:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergal P, Clemencet M (1962) The botany of the barley plant. In: Cook AH (ed) Barley and malt: biology, biochemistry and technology. Academic Press, New York

    Google Scholar 

  • Borràs G, Romagosa I, van Eeuwijk F, Slafer G (2009) Genetic variability in the duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crop Res 113(2):95–104

    Article  Google Scholar 

  • Bossinger G, Lundqvist U, Rohde W, Salamini F (1992) Genetics of plant development in barley. In: Munck L (ed) Barley genetics VI, vol II. Munksgaard International Publishers, Copenhagen, pp 989–1017

    Google Scholar 

  • Bovina R, Talamè V, Ferri M, Tuberosa R, Chmielewska B, Szarejko I, Sanguineti MC (2011) Identification of root morphology mutants in barley. Plant Genet Res 9(2):357–360

    Article  Google Scholar 

  • Braumann I, Dockter C, Beier S, Himmelbach A, Lok F, Lundqvist U, Skadhauge B, Stein N, Zakhrabekova S, Shou R, Hansson M (2018) Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding. Hereditas 155:10

    Article  PubMed  Google Scholar 

  • Briggs DE (1978) The morphology of barley; the vegetative phase. In: “Barley” Briggs DE, Chapman and Hall, London, pp 1–38. ISBN-13: 978-94-009-5717-6

    Google Scholar 

  • Broughton S, Zhou G, Teakle N, Matsuda R, Zhou M, O’Leary R, Colmer T, Li C (2015) Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breed 35(1):27

    Google Scholar 

  • Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WT, Guo W et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Commun 8(1):936

    Article  CAS  Google Scholar 

  • Busch BL, Schmitz G, Rossmann S, Piron F, Ding J et al (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23(10):3595–3609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40(1):143–150

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Chen S (1995) Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul 16(2):189–196

    Article  CAS  Google Scholar 

  • Chandler PM, Harding CA (2013) ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ DELLA gene. J Exp Bot 64(6):1603–1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler PM, Robertson M (1999) Gibberellin dose-response curves and the characterization of dwarf mutants of barley. Plant Physiol 120(2):623–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol 129(1):181–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler PM, Harding CA, Ashton AR, Mulcair MD, Dixon NE, Mander LN (2008) Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol Plant 1(2):285–294

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Krugman T, Fahima T, Chen K, Hu Y, Roder M, Nevo E, Korol A (2009) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genet Resour Crop Evol 57(1):85–99

    Article  Google Scholar 

  • Chloupek O, Forster BP, Thomas WT (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112(5):779–786

    Article  PubMed  CAS  Google Scholar 

  • Chmielewska B, Janiak A, Karcz J, Guzy-Wrobelska J, Forster BP, Nawrot M, Rusek A, Smyda P, Kedziorski P, Maluszynski M, Szarejko I (2014) Morphological, genetic and molecular characteristics of barley root hair mutants. J Appl Genet 55(4):433–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133(3):1209–1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cline MG (1997) Concepts and terminology of apical dominance. Am J Bot 84(8):1064–1069

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell wall. Curr Opin Plant Biol 25:162–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dabbert T, Okagaki R, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118(7):1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121(4):705–717

    Article  PubMed  CAS  Google Scholar 

  • Dahleen L, Franckowiak JD, Lundqvist U (2007) Barley Genet Newslett 37. URL: https://wheat.pw.usda.gov/ggpages/bgn/37/index.html

  • Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27(9):2318–2334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M (2016) Photoperiod-H1 (Ppd-H1) controls leaf size. Plant Physiol 172(1):405–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dockter C, Hansson M (2015) Improving barley culm robustness for secured crop yield in a changing climate. J Exp Bot 66(12):3499–3509

    Article  PubMed  CAS  Google Scholar 

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller AH, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166(4):1912–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodd IC, Diatloff E (2016) Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild-type plants. Funct Plant Biol 43(2):199–206

    Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488

    Article  PubMed  CAS  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17(3):385–403

    Article  Google Scholar 

  • Doring HP, Lin J, Uhrig H, Salamini F (1999) Clonal analysis of the development of the barley (Hordeum vulgare L.) leaf using periclinal chlorophyll chimeras. Planta 207(3):335–342

    Article  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155(2):617–627

    Article  PubMed  CAS  Google Scholar 

  • Fletcher GM, Dale JE (1974) Growth of tiller buds in barley: effects of shade treatment and mineral nutrition. Ann Bot 38(1):63–76

    Article  CAS  Google Scholar 

  • Fonesca S, Patterson L (1968) Hybrid vigour in seven parental diallel crosses in common winter wheat. Crop Sci 8:85–88

    Article  Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas WTB (2007) The barley phytomer. Ann Bot 100(4):725–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Franckowiak JD, Lundqvist U (2002) Barley Genet Newslett 32. URL: https://wheat.pw.usda.gov/ggpages/bgn/32/index.html

  • Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low-and high-P soils. Plant, Cell Environ 26(10):1759–1766

    Article  CAS  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432(7017):630–635

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30(8):875–889

    Article  PubMed  Google Scholar 

  • Gebeyehou G, Knott DR, Baker RJ (1982) Relationships among duration of vegetative and grain filling phases, yield components and grain yield in durum wheat cultivars. Crop Sci 22(2):287–290

    Article  Google Scholar 

  • George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol 203(1):195–205

    Article  PubMed  CAS  Google Scholar 

  • Gong X, McDonald G (2017) QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theor Appl Genet 130(9):1885–1902

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Tanabe M, Ishibashi T, Tsutsumi N, Yoshimura A, Nemoto K (2005) Tillering behavior of the rice fine culm 1 mutant. Plant Prod Sci 8(1):68–70

    Article  Google Scholar 

  • Grando S, Ceccarelli S (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86(1):73–80

    Article  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Sponsel V (2015) A century of Gibberellin research. J Plant Growth Regul 34(4):740–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98(4):2065–2070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemming M, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282(2):107–117

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka K, Yamaguchi A, Abe M, Araki T (2013) The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol 54(3):352–368

    Article  PubMed  CAS  Google Scholar 

  • Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N et al (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA 110(41):16675–16680

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussien A, Tavakol E, Horner DS, Munoz-Amatriain M, Muehlbauer GJ, Rossini L (2014) Genetics of tillering in rice and barley. Plant Genome 7(1):1–20

    Article  CAS  Google Scholar 

  • Ito A, Yasuda A, Yamaoka K, Ueda M, Nakayama A, Takasuto S, Honda I (2017) Brachytic1 of barley (Hordeum vulgare L.) encodes the α subunit of heterotrimeric G protein. J Plant Physiol 213:209–215

    Article  PubMed  CAS  Google Scholar 

  • Jackson VG (1922) Anatomical structure of the roots of barley. Ann Bot 36(141):21–39

    Article  Google Scholar 

  • Jeon JS, Jung KH, Kim HB, Suh JP, Khush GS (2011) Genetic and molecular insights into the enhancement of rice yield potential. J Plant Biol 54(1):1–9

    Article  Google Scholar 

  • Johnston R, Wang M, Sun Q, Sylvester AW, Hake S, Scanlon MJ (2014) Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Plant Cell 26(12):4718–4732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jost M, Hensel G, Kappel C, Druka A, Sicard A, Hohmann U, Beier S, Himmelbach A, Waugh R, Kumlehn J, Stein N, Lenhard M (2016) The INTERMEDIATE DOMAIN protein BROAD LEAF1 limits barley leaf width by restricting lateral proliferation. Curr Biol 26(7):903–909

    Article  PubMed  CAS  Google Scholar 

  • Karsai I, Eszaros KM, Szucs P, Hayes PM, Lang L, Bedo Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant Breed 118(5):399–403

    Article  Google Scholar 

  • Karsai I, Szücs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110(8):1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Karsai I, Meszaros K, Szücs P, Hayes PM, Lang L, Bedo Z (2006) The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative × winter barley (Hordeum vulgare L.) mapping population. Plant Breed 125(5):468–472

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101(7):1114–1121

    Article  CAS  Google Scholar 

  • Kaur R, Singh K, Singh J (2013) A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 13(2):167–177

    Google Scholar 

  • Kebrom TH, Brutnell TP, Finlayson SA (2010) Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ 33(1):45–58

    Google Scholar 

  • Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160(1):308–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khush GS (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed 132(5):433–436

    CAS  Google Scholar 

  • Kirby E, Appleyard M (1987) Cereal development guide, 2nd edn. Arable Unit, Stoneleigh, Warwickshire

    Google Scholar 

  • Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot 62(2):717–733

    Article  PubMed  CAS  Google Scholar 

  • Kołodziejek I, Wałęza M, Mostowska A (2006) Morphological, histochemical and ultrastructural indicators of maize and barley leaf senescence. Biol Plant 50(4):565–573

    Article  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He CF, Azhaguvel P, Kanamori H, Perovic D et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104(4):1424–1429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Acad Sci USA 110(32):13198–13203

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotula L, Clode PL, Striker GG, Pedersen O, Läuchli A, Shabala S, Colmer TD (2015) Oxygen deficiency and salinity affect cell specific ion concentrations in adventitious roots of barley (Hordeum vulgare). New Phytol 208(4):1114–1125

    Article  PubMed  CAS  Google Scholar 

  • Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P (2013) Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 54(4):381–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of beta-expansion gene related to root hair formation in barley. Plant Physiol 141(3):1149–1158

    Google Scholar 

  • Kwasniewski M, Nowakowska U, Szumera J, Chwialkowska K, Szarejko I (2013) iRootHair: a comprehensive root hair genomics database. Plant Physiol 161:28–35. http://www.iroothair.org/. Accessed 6 Mar 2018

  • Lavenus J, Guyomarc’h S, Laplaze L (2016) PIN transcriptional regulation shapes root system architecture. Trends Plant Sci 21(3):175–177

    Article  PubMed  CAS  Google Scholar 

  • Lewis MW, Hake S (2016) Keep on growing: building and patterning leaves in the grasses. Curr Opin Plant Biol 29:80–86

    Article  PubMed  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng D et al (2003) Control of tillering in rice. Nature 422(6932):618–621

    Article  PubMed  CAS  Google Scholar 

  • Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W (2015) Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS ONE 10(10):e0140246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linde-Laursen I (1977) Barley mutant with few roots. Barley Genet Newslett 7:43–45

    Google Scholar 

  • Lundqvist U (2014) Scandinavian mutation research in barley—a historical review. Hereditas 151(6):123–131

    Article  PubMed  Google Scholar 

  • Lundqvist U, Franckowiak JD (2013) Barley Genet Newslett 43. URL: https://wheat.pw.usda.gov/ggpages/bgn/43/index.html

  • Lundqvist U, Franckowiak JD (2014) Barley Genet Newslett 44. URL: https://wheat.pw.usda.gov/ggpages/bgn/44/index.html

  • Lundqvist U, Lundqvist A (1987) An intermedium gene present in a commercial 6-row variety of barley. Hereditas 107(2):131–135

    Article  Google Scholar 

  • Lundqvist U, Lundqvist A (1988) Induced intermedium mutants in barley—origin. Morphology and inheritance. Hereditas 108(1):13–26

    Article  Google Scholar 

  • Luxová M (1986) The seminal root primordia in barley and the participation of their non-meristematic cells in root construction. Biol Plantarum 28(3):161–167

    Article  Google Scholar 

  • Luxová M (1989) The vascular system in the roots of barley and its hydraulic aspects. In: Loughman BC, Gasparikova O, Kolek J (eds) Structural and functional aspects of transport in roots. Kluwer Academic Publisher, Dordrecht, pp 15–20

    Chapter  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacLeod AM, Palmer GH (1966) The embryo of barley in relation to modification of the endosperm. J Inst Brew 72(6):580–589

    Article  CAS  Google Scholar 

  • Martınez AE, Franzone PM, Aguinaga A, Polenta G, Murray R, Prina AR (2004) A nuclear gene controlling seminal root growth response to hydroponic cultivation in barley. Environ Exp Bot 51(2):133–144

    Article  CAS  Google Scholar 

  • Martre P, Quilot-Turion B, Luquet D, Ould-Sidi Memmah MM, Chenu K, Debaeke P (2015) Model-assisted phenotyping and ideotype design. In: Sadras V, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy, 2nd edn. Academic Press, London

    Google Scholar 

  • Marzec M, Melzer M, Szarejko I (2015) Root hair development in the grasses: what we already know and what we still need to know. Plant Physiol 168(2):407–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marzec M, Gruszka D, Tylec P, Szarejko I (2016) Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol Plant 158(3):341–355

    Article  PubMed  CAS  Google Scholar 

  • Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107(7):1203–1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6):1081

    Google Scholar 

  • Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131(12):2827–2839

    Article  PubMed  CAS  Google Scholar 

  • Naz AA, Ehl A, Pillen K, Léon J (2012) Validation for root-related quantitative trait locus effects of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breed 131(3):392–398

    Article  Google Scholar 

  • Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Léon J (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet 15(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T (2013) BRANCHED1 Interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25(4):1228–1242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norberg M, Holmlund M, Nilsson O (2005) The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132(9):2203–2213

    Article  PubMed  CAS  Google Scholar 

  • Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K (2017) QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes. J Appl Genet 58(1):49–65

    Article  PubMed  CAS  Google Scholar 

  • Okagaki RJ, Haaning A, Bilgic H, Heinen S, Druka A, Bayer M, Waugh R, Muehlbauer GJ (2018) ELIGULUM-A regulates lateral branch and leaf development in barley. Plant Physiol 176:2750–2760

    Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18(8):459–467

    Article  PubMed  CAS  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112(28):8529–8536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55(8):895–906

    Article  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crop Res 108(1):32–38

    Article  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43(2):169–172

    Article  PubMed  CAS  Google Scholar 

  • Ritter MK, Padilla CM, Schmidt RJ (2002) The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot 89(2):203–210

    Article  PubMed  Google Scholar 

  • Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K, Blank M, Janiak A, Szarejko I, Chmielewska B, Karcz J, Morris J, Hedley PE, George TS, Bulgarelli D (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson H, Hickey L, Richard C, Mace E, Kelly A, Borrell A, Franckowiak J, Fox G (2016) Genomic regions influencing seminal root traits in barley. Plant Genome 9(1)

    Google Scholar 

  • Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126(11):2803–2824

    Article  PubMed  CAS  Google Scholar 

  • Rossini L, Okagaki R, Druka A, Muehlbauer GJ (2014) Shoot and inflorescence architecture. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 55–80. ISBN 978-3-662-44405-4

    Chapter  Google Scholar 

  • Saisho D, Tanno K, Chono M, Honda I, Kitano H, Takeda K (2004) Spontaneous brassinolide-insensitive barley mutants “uzu” adapted to East Asia. Breed Sci 54(4):409–416

    Article  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M et al (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotech 24(1):105–109

    Article  CAS  Google Scholar 

  • Salvi S (2017) An evo-devo perspective on root genetic variation in cereals. J Exp Bot 68(3):351–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the ‘Prophet’ of the green revolution. J Agric Sci 151(1):1–5

    Article  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702

    Article  PubMed  CAS  Google Scholar 

  • Sayed MA, Hamada A, Lèon J, Naz AA (2017) Genetic mapping reveals novel exotic QTL alleles for seminal root architecture in barley advanced backcross double haploid population. Euphytica 213(1):2

    Article  CAS  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122(6):1683–1691

    PubMed  CAS  Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8(5):506–511

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, Sanghera GS, Sahu P, Sahu P, Parikh M, Sharma B et al (2013) Tailoring rice plants for sustainable yield through ideotype breeding and physiological interventions. Afr J Agric Res 8(40):5004–5019

    Google Scholar 

  • Sharman BC (1942) Developmental anatomy of the shoot Zea mays L. Ann Bot 6(2):245–282

    Article  Google Scholar 

  • Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283(5407):1456–1456

    Article  CAS  Google Scholar 

  • Smith S, De Smet Ive (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond B Biol Sci 367(1595):1441–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inforescence. Plant Cell 15(8):1717–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99(13):9043–9048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43(11):1160–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110(3):985–1000

    PubMed  CAS  Google Scholar 

  • Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6(5):477–485

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Taramino G, Sauer M, Stauffer JL, Multani D, Niu XM, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and postembryonic shoot-borne root initiation. Plant J 50(4):649–659

    Article  PubMed  CAS  Google Scholar 

  • Tavakol E, Okagaki R, Verderio G, Shariati JV, Hussien A et al (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-Like protein that controls tillering and leaf patterning. Plant Physiol 168(1):164–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M (2017) Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J 91(4):601–612

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034

    Article  PubMed  CAS  Google Scholar 

  • van Esse W, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M (2017) Six-rowed spike 3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174(4):2397–2408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F (2011) Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. Plant J 66(2):341–353

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112(7):1221–1231

    Article  CAS  Google Scholar 

  • Voss-Fels KP, Robinson H, Mudge SR, Richard C, Newman S, Wittkop B, Stahl A, Friedt W, Frisch M, Gabur I, Miller-Cooper A, Campbell BC, Kelly A, Fox G, Christopher J, Christopher M, Chenu K, Franckowiak J, Mace ES, Borrell AK, Eagles H, Jordan DR, Botella JR, Hammer G, Godwin ID, Trevaskis B, Snowdon RJ, Hickey LT (2018) VERNALIZATION1 modulates root system architecture in wheat and barley. Mol Plant 11(1):226–229

    Article  PubMed  CAS  Google Scholar 

  • Vriet C, Russinova E, Reuzeaua C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120(8):1559–1574

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  PubMed  CAS  Google Scholar 

  • Weatherwax P (1923) The story of the maize plant. University of Chicago Press, Chicago

    Google Scholar 

  • Wendt T, Holme I, Dockter C, Preuû A, Thomas W, Druka A et al (2016) HvDep1 Is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11(12):e0168924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White PJ, Bengough AG, Bingham IJ, George TS, Karley AJ, Valentine TA (2009) Induced mutations affecting root architecture and mineral acquisition in barley. In: Shu QY (ed) Induced plant mutations in the genomics era. Joint FAO/IAEA division of nuclear techniques in food and agriculture. IAEA, Vienna, pp 338–340

    Google Scholar 

  • Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S et al (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshikawa T, Tanaka SY, Masumoto Y, Nobori N, Ishii H, Hibara KI et al (2016) Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breed Sci 66(3):416–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu P, Gutjahr C, Li C, Hochholdinger F (2016) Genetic control of lateral root formation in cereals. Trends Plant Sci 21(11):951–961

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33(5):683–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Zhou G, Shabala S, Koutoulis A, Shabala L, Johnson P, Li C, Zhou M (2016) Identification of aerenchyma formation related QTL in barley that can be effective in breeding for waterlogging tolerance. Theor Appl Genet 129(6):1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet 130(8):1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun H, Dai H, Zhang G, Wu F (2010) Differences in response to drought stress among Tibet wild barley genotypes. Euphytica 172(3):395–403

    Article  CAS  Google Scholar 

  • Zheng R, Li H, Jiang R, Römheld V, Zhang F, Zhao FJ (2011) The role of root hairs in cadmium acquisition by barley. Environ Pollut 159(2):408–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

LR wishes to acknowledge FACCE ERA-NET funding under projects BarPLUS (ERA-NET FACCE SURPLUS grant no. 93) and ClimBar (ERA-NET FACCE on Climate Smart Agriculture) for supporting research on genetics of barley plant architecture in her laboratory. MK acknowledges funding by the German Cluster of Excellence on Plant Sciences (CEPLAS) EXC1028, the Priority Programme (SPP1530 Flowering time control—from natural variation to crop improvement) and the Max Planck Society.

Authors’ Contributions

LR, GJM, SS and MK conceived the layout of the chapter. GJM and RO wrote Sects. 13.1.1, 13.2.2 and 13.2.3, prepared Figs. 13.1, 13.2, 13.5 and Table 13.2. SS wrote Sects. 13.1.2 and 13.3, prepared Figs. 13.3 and 13.4. MK wrote Sects. 13.2.4 and 13.2.5. LR wrote Sects. 13.2.1 and 13.4, prepared Table 13.1, and integrated contributions from other authors. All authors reviewed and approved the final version of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rossini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossini, L., Muehlbauer, G.J., Okagaki, R., Salvi, S., von Korff, M. (2018). Genetics of Whole Plant Morphology and Architecture. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_13

Download citation

Publish with us

Policies and ethics