Skip to main content

Micropropagation and Somatic Embryogenesis in Sugarcane

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

Sugarcane propagation through conventional means does not provide sufficient planting material of a variety, particularly desirable in case of newly released varieties to achieve large-scale dissemination; this is attributed to slow rate of seed multiplication by conventional sett planting. On the other hand, micropropagation technique of tissue culture ensures production of disease-free and true-to-type planting material of popular (new as well as old) varieties in an abundant quantity in a short period of time. The cultures of meristematic buds or spindle leaves, collected from healthy plants, are established aseptically under controlled nutritional and environmental conditions in vitro, followed by multiplication of shoots and induction of roots; the plantlets are hardened and supplied to growers. Somatic embryogenesis is the process of embryo formation and development from somatic cells of an explant under in vitro conditions. The somatic cells in culture can follow two pathways for somatic embryogenesis, either direct or indirect. The plants regenerated through direct somatic embryogenesis are often uniform; thus, the pathway finds use in clonal propagation and genetic transformation of sugarcane genotypes. In indirect somatic embryogenesis pathway, first callus is induced from cultured explants under the influence of an auxin (mostly 2, 4-D) which is then regenerated into plants; such plants may exhibit somaclonal variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir A, Muhammad I, Majid A et al. (2013) In vitro conservation and production of vigorous and desiccate tolerant synthetic seed formation in sugarcane (Saccharum officinarum L.). https://www.researchgate.net/publication/267466088

  • Abbas SR, Gardazi SDA, Aziz W et al (2013) Hormonal effect on shoot multiplication in sugarcane genotypes. Int J Sci Eng Res 4:995

    Google Scholar 

  • Ahloowalia BS (2004) Integration of technology from lab to land. In: Anonymous (ed) Low cost options for tissue culture technology in developing countries. IAEA-TECDOC-1384, International Atomic Energy Agency, Vienna, pp 87–89

    Google Scholar 

  • Ahloowalia BS, Maretzki A (1983) Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep 2:21–25

    PubMed  CAS  Google Scholar 

  • Alam MZ, Haider SA, Islam A et al (1995) High frequency in vitro plant regeneration in sugarcane. Sugarcane 6:20–21

    Google Scholar 

  • Ali K, Afghan S (2001) Rapid multiplication of sugarcane through micropropagation technique. Pak Sugar J 16:11–14

    Google Scholar 

  • Ali A, Naz S, Siddiqui FA et al (2008) An efficient protocol for large scale production of sugarcane through micropropagation. Pak J Bot 40:139–149

    CAS  Google Scholar 

  • Ali S, Iqbal J, Khan MS (2010) Genotype independent in vitro regeneration system in elite varieties of sugarcane. Pak J Bot 42:3783–3790

    CAS  Google Scholar 

  • Ali S, Khan MS, Iqbal J (2012) In vitro direct plant regeneration from cultured young leaf segments of sugarcane (Saccharum officinarum L.) J Anim Plant Sci 22:1107–1112

    CAS  Google Scholar 

  • Anita P, Jain RK, Sehrawat AR et al (2000) Efficient and cost-effective micropropagation of two early maturing varieties of sugarcane (Saccharum spp.) Ind Sugar 50:611–618

    Google Scholar 

  • Asad S, Arshad M, Mansoor S et al (2009) Effect of various amino acids on shoot regeneration of sugarcane (Sacchrum officinarum L.) Afr J Biotechnol 8:1214–1218

    CAS  Google Scholar 

  • Ather A, Khan S, Rehman A, Nazir M (2009) Optimization of the protocols for callus induction, regeneration and acclimatization of sugarcane cv. Thatta-10. Pak J Bot 41:815–820

    CAS  Google Scholar 

  • Bailey RA, Bechet GRA (1989) Comparison of seedcane derived from tissue culture in sugarcane with conventional seedcane. Proc S Afr Sugar Tech Ass 63:125–129

    Google Scholar 

  • Bajpai A, Kalim S, Chandra R et al (2016) Recurrent somatic embryogenesis and plantlet regeneration in Psidium guajava L. Braz Arch Biol Technol 59:1–11

    Article  CAS  Google Scholar 

  • Baksha R, Alam R, Karim MZ et al (2002) In vitro shoot tip culture of sugar-cane (Saccharum officinarum) variety Isd 28. Biotechnol 1:67–72

    Article  Google Scholar 

  • Baksha R, Alam R, Karim MZ et al (2003) Effect of auxin, sucrose and pH level on in vitro rooting of callus induced micro shoots of sugarcane (Saccharum officinarum). J Biol Sci 3:915–920

    Article  Google Scholar 

  • Balamuralikrishnan M, Doraisamy S, Ganapathy T et al (2003) Impact of serial thermotherapy on sugarcane mosaic virus titre and regeneration in sugarcane. Arch Phytopathol Plant Protect 36:173–178

    Article  Google Scholar 

  • Ball EA (1946) Development in sterile culture of stem tips and subjacent regions of Tropaeolum majus L. and Lupinus albus L. Amer J Bot 33:301–318

    Article  Google Scholar 

  • Barba RC, Zamora AB, Mallion AK et al (1978) Sugarcane tissue culture research. Proc Int Soc Sugar Cane Technol 16:1843–1863

    Google Scholar 

  • Behera KK, Sahoo S (2009) Rapid in vitro micro propagation of sugarcane (Saccharum officinarum L. cv-Nayana) through callus culture. Nature Sci 7:1–10

    Google Scholar 

  • Biradar S, Biradar DP, Patil VC et al (2009) In vitro plant regeneration using shoot tip culture in commercial cultivar of sugarcane. Karnataka J Agric Sci 22:21–24

    Google Scholar 

  • Brisibe EA, Miyake H, Taniguchi T et al (1994) Regulation of somatic embryogenesis in long term callus cultures of sugarcane (Saccharum officinarum L.) New Phytol 126:301–307

    Article  CAS  Google Scholar 

  • Burner DM, Grisham MP (1994) Induction and stability of phenotypic variation in sugarcane as affected by propagation procedure. Crop Sci 35:875–880

    Article  Google Scholar 

  • Chatenet M, Delage C, Ripolles M et al (2001) Detection of sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis 85:1177–1180

    Article  PubMed  Google Scholar 

  • Chattha MA, Imran MI, Abida A et al (2001) Micropropagation of sugarcane (Saccharum sp.) Pak Sugar J 16:2–6

    Google Scholar 

  • Chawla HS (2009) Introduction to plant biotechnology, 3rd edn. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Cheema KL, Hussain M (2004) Micropropagation of sugarcane through apical bud and axillary bud. Int J Agric Biol 6:257–259

    Google Scholar 

  • Chengalrayan K, Abouzid A, Gallo-Meacher M (2005) In vitro regeneration of plants from sugarcane seed-derived callus. In Vitro Cell Dev Biol-Plant 41:477–482

    Article  Google Scholar 

  • Chowdhury MKU, Vasil IK (1993) Molecular analysis of plants regenerated from embryogenic cultures of hybrid sugarcane cultivars (Saccharum spp.) Theor Appl Genet 86:181–188

    PubMed  CAS  Google Scholar 

  • Coleman RE (1970) New plants produced from callus tissue culture. Sugarcane Research, 1970 report, U.S. Dept Agric Res Serv Pl Sci Res Division, USA, p 38

    Google Scholar 

  • da Rocha PSG, de Oliveira RP, Scivittaro WB (2013) Sugarcane micropropagation using light emitting diodes and adjustment in growth-medium sucrose concentration. Ciênc Rural 43:1168–1173

    Article  Google Scholar 

  • Dash M, Mishra PK, Mohapatra D (2011) Mass propagation via shoot tip culture and detection of genetic variability of Saccharum officinarum clones using biochemical markers. Asian J Biotechnol 3:378–387

    Article  CAS  Google Scholar 

  • de Alcantara GB, Dibax R, de Oliveira RA et al (2014) Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454. Acta Sci 36:63–72

    Article  Google Scholar 

  • Desai NS, Suprasanna P, Bapat VA (2004) Simple and reproducible protocol for direct somatic embryogenesis from cultured immature inflorescence segments of sugarcane (Saccharum spp.) Curr Sci 87:764–768

    Google Scholar 

  • Dewanti P, Widuri LI, Ainiyati C et al (2016) Elimination of SCMV (sugarcane Mozaik virus) and rapid propagation of virus-free sugarcane (Saccharum officinarum L.) using somatic embryogenesis. Proc Chem 18:96–102

    Article  CAS  Google Scholar 

  • Dhumle DB, Ingole CL, Durge DV (1994) In vitro regeneration of sugarcane tissue culture. Ann Plant Physiol 9:192–194

    Google Scholar 

  • Dinesh P, Thirunavukkarasu P, Saraniya AR et al (2015) In vitro studies of sugarcane variety Co-91017 through micropopagation of shoot tip culture. Adv Plants Agric Res 2:00071

    Google Scholar 

  • Eksomtramage T, Paulet F, Guiderdoni E et al (1992) Development of a cryopreservation process for embryogenic calluses of a commercial hybrid of sugarcane (Sacharum sp.) and application to different varieties. Cryo-Letters 13:239–252

    Google Scholar 

  • Eldessoky DS, Ismail RM, Abdel-Hadi A et al (2011) Establishment of regeneration and transformation system of sugarcane cultivar GT54-9 (C9). GM Crops 2:126–134

    Article  PubMed  Google Scholar 

  • Falco M, Mendes J, Neto AZ (1996) Cell suspension culture of sugarcane: growth, management and plant regeneration. Bras Fisiol Veg 8:1–6

    Google Scholar 

  • Ferreira LT, de Araújo Silva MM, Ulisses C et al (2017) Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tissue Organ Cult 128:211–221

    Article  CAS  Google Scholar 

  • Finkle BJ, Ulrich JM (1982) Cryprotectant removal temperature as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19:329–335

    Article  PubMed  CAS  Google Scholar 

  • Fitch MMM, Lehrer AT, Komor E et al (2001) Elimination of sugarcane yellow leaf virus from infected sugarcane plants by meristem tip culture visualized by tissue blot immunoassay. Plant Pathol 50:676–680

    Article  Google Scholar 

  • Gandonou C, Errabii T, Abrini J et al (2005) Effect of genotype on callus induction and plant regeneration from leaf explants of sugarcane (Saccharum sp.) Afr J Biotechnol 4:1250–1255

    Google Scholar 

  • Garcia R, Cidadae D, Castellar A et al (2007) In vitro morphogenesis patterns from shoot apices of sugarcane are determined by light and type of growth regulator. Plant Cell Tissue Organ Cult 90:181–190

    Article  Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture: a personal account. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 2. Academic Press, New York, pp 1–59

    Google Scholar 

  • Geetha S, Padmanabhan D, Manuel WW et al (2000) In vitro production of sugarcane plants. Sugar Tech 2:47–48

    Article  Google Scholar 

  • Geijskes RJ, LiFang W, Lakshmanan P et al (2003) SmartSettâ„¢ seedlings: tissue cultured seed plants for the Australian sugar industry. Sugar Cane Int May/June:13–17

    Google Scholar 

  • Getnet B, Bantte K, Diro M (2016) The effects of α-naphthalene acetic acid (NAA) on in vitro rooting of sugarcane (Saccharum officinarum L.) genotypes. Int J Agric Sci Nat Resour 3:18–21

    Article  Google Scholar 

  • Gill NK, Gill R, Gosal SS (2004) Factors enhancing somatic embryogenesis and plant regeneration in sugarcane (Saccharum officinarum L.) Indian J Biotechnol 3:119–123

    CAS  Google Scholar 

  • Gill R, Malhotra PK, Gosal SS (2006) Direct plant regeneration from cultured young leaf segments of sugarcane. Plant Cell Tissue Organ Cult 84:227–231

    Article  CAS  Google Scholar 

  • Gnanapragasam S, Vasil IK (1990) Plant regeneration from cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.) Plant Cell Rep 9:419–423

    Article  PubMed  CAS  Google Scholar 

  • Godheja J, Sudhir KS, Modi DR (2014) The standardization of protocol for large scale production of sugarcane (Co-86032) through micropropagation. Int J Plant Anim Environ Sci 4:135–143

    CAS  Google Scholar 

  • Gopitha K, Bhavani AL, Senthilmanickam J (2010) Effect of the different auxins and cytokinins in callus induction, shoot, root regeneration in sugarcane. Int J Pharm Biol Sci 1:1–7

    Google Scholar 

  • Gosal SS, Thind KS, Dhaliwal HS (1998) Micropropagation of sugarcane – an efficient protocol for commercial plant production. Crop Improv 25:167–171

    Google Scholar 

  • Grisham MP, Bourg D (1989) Efficiency of in vitro propagation of sugarcane plants by direct regeneration from leaf tissue and by shoot-tip culture. J Am Soc Sugar Technol 9:97–102

    Google Scholar 

  • Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348

    Article  Google Scholar 

  • Hendre RR, Mascarenhas AF, Nadgir AL et al (1975) Growth of mosaic virus free sugarcane plants from apical meristems. Ind Phytopathol 18:175–178

    Google Scholar 

  • Hendre RR, Iyer RS, Kotwal M et al (1983) Rapid multiplication of sugar cane by tissue culture. Sugarcane 1:5–8

    Google Scholar 

  • Heringer AS, Barroso T, Macedo AF (2015) Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS One 10:e0127803. https://doi.org/10.1371/journal.pone.0127803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himanshu S, Gill MS, Gosal SS (2000) Regulation of somatic embryogenesis and plant regeneration in sugarcane (Saccharum officinarum). Ind J Agric Sci 70:181–183

    Google Scholar 

  • Ho WJ, Vasil IK (1983a) Somatic embryogenesis in sugarcane (Saccharum officcinarum L.): the morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  • Ho WJ, Vasil IK (1983b) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726

    Article  Google Scholar 

  • Hoy JW, Bischoff KP, Milligan SB et al (2003) Effect of tissue culture plant source on sugarcane yield components. Euphytica 129:237–240

    Article  CAS  Google Scholar 

  • Hu CY, Wang PJ (1983) Meristem, shoot tip, bud culture. In: Evans DA et al (eds) Plant cell culture, vol 1. Macmillan, New York, pp 177–227

    Google Scholar 

  • Hussein SR, Ibrahim AL, Kiong P (2006) Somatic embryogenesis: an alternative method for in vitro micropopagation. Iran J Biotechnol 4:156–161

    Google Scholar 

  • Ijaz S, Rana IA, Khan IA et al (2012) Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes. Genet Mol Res 11:512–530

    Article  PubMed  CAS  Google Scholar 

  • Jahangir GZ, Nasir IA, Sial RA et al (2010) Various hormonal supplementations activate sugarcane regeneration in-vitro. J Agric Sci 2:231–237

    Google Scholar 

  • Jalaja NC, Neelamathi D, Sreenivasan TV (2008) Micropropagation for quality seed production in sugarcane in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Asia-Pacific Consortium on Agricultural Biotechnology, New Delhi

    Google Scholar 

  • Karim MZ, Alam R, Baksha R et al (2002a) In vitro clonal propagation of sugarcane (Saccharum officinarum) variety Isd 31. Pak J Biol Sci 5:659–661

    Article  Google Scholar 

  • Karim MZ, Amin MN, Hossain MA et al (2002b) Micropropagation of two sugarcane (Saccharum officinarum) varieties from callus culture. Online J Biol Sci 2:682–685

    Article  Google Scholar 

  • Kartha KK, Engelmann F (1994) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. In: Vasil IK, Ziorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Pub, Dordrecht, pp 198–221

    Google Scholar 

  • Kaur R, Kapoor M (2016) Plant regeneration through somatic embryogenesis in sugarcane. Sugar Tech 18:93–99

    Article  CAS  Google Scholar 

  • Kaur A, Sandhu JS (2014) High throughput in vitro micropropagation of sugarcane from spindle leaf roll segments: cost analysis for agri-business industry. Plant Cell Tissue Organ Cult 120:339–350

    Article  CAS  Google Scholar 

  • Kaur A, Singh RS, Sah SK (2014) New sugarcane CoPb 91: producing seed canes through micropropagation. Progressive Farming PAU, April issue:12–13

    Google Scholar 

  • Khan MR, Rashid H (2003) Studies on the rapid clonal propagation of Saccharum officinarum. Pak J Biol Sci 6:1876–1879

    Article  Google Scholar 

  • Khan IA, Dahot MU, Yasmin S et al (2006) Effect of sucrose and growth regulators on the micropropagation of sugarcane clones. Pak J Bot 38:961–967

    Google Scholar 

  • Khan SA, Rashid H, Chaudhary FM et al (2008) Rapid micropropagation of three elite sugarcane (Saccharum officinarum L.) varieties by shoot tip culture. Afr J Biotechnol 7:2174–2180

    CAS  Google Scholar 

  • Krikorian AD (1982) Cloning higher plants from aseptically cultured tissues and cells. Biol Rev 57:151–218

    Article  Google Scholar 

  • Lai N, Krishna R (1997) Yield comparison in sugarcane crop raised from conventional and mericlone derived seed cane. Ind Sugar 47:617–621

    Google Scholar 

  • Lakshmanan P (2006) Somatic embryogenesis in sugarcane – an addendum to the invited review sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant Biol 42:201–205

    Article  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Wang L et al (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep 25:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Lal N (1993) Proliferation and greening effects of sucrose on sugarcane shoot cultures in vitro. Sugarcane 6:13–15

    Google Scholar 

  • Lal N (2003) High frequency plant regeneration from sugarcane callus. Sugar Tech 5:89–91

    Article  CAS  Google Scholar 

  • Lal M, Singh DN (1999) In vitro morphogenetic responses in leaf explants of sugarcane (Saccharum species complex). Sugar Tech 1:37–38

    Article  Google Scholar 

  • Lal RM, Singh SB (2005) Comparative performance of micropropagated and conventionally raised crops of sugarcane. Sugar Tech 7:93–95

    Article  Google Scholar 

  • Lal M, Singh RK, Srivastava S et al (2008) RAPD marker based analysis of micropropagated plantlets of sugarcane for early evaluation of genetic fidelity. Sugar Tech 10:99–103

    Article  CAS  Google Scholar 

  • Lal M, Tiwari AK, Gupta GN et al (2015) Commercial scale micropropagation of sugarcane: constraints and remedies. Sugar Tech 17:339–347

    Article  CAS  Google Scholar 

  • Lee TSG (1986) Multiplication of sugarcane by apex culture. Turrialba 36:231–235

    Google Scholar 

  • Lee TSG (1987) Micropropagation of sugarcane Saccharum spp. Plant Cell Tissue Organ Cult 10:47–55

    Article  Google Scholar 

  • Leu LS (1978) Apical meristem culture and redifferentiation of callus masses to free some sugarcane systemic diseases. Plant Prot Bull 20:77–82

    Google Scholar 

  • Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. InTech Pub, pp 123–150 (from:http://www.intechopen.com/books/)

    Chapter  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotech 11:416–425

    Article  CAS  Google Scholar 

  • Liu MC (1993) Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescence of sugarcane. J Plant Physiol 141:714–720

    Article  Google Scholar 

  • Lorenzo JC, Blanco MA, Pelaez O et al (2001a) Sugarcane micropropagation and phenolic excretion. Plant Cell Tissue Organ Cult 65:1–8

    Article  CAS  Google Scholar 

  • Lorenzo JC, Ojeda E, Espinosa A et al (2001b) Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell Dev Biol Plant 37:803–806

    Article  Google Scholar 

  • Lourens AG, Martin FA (1987) Evaluation of in vitro-propagated sugarcane hybrids for somaclonal variation. Crop Sci 27:793–796

    Article  Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K et al (2011) Induction of somatic embryogenesis in different varieties of sugarcane (Saccharam officinarum L.) Res Plant Biol 1:39–48

    Google Scholar 

  • Martinez-Montero ME, Gonzalez-Arnao MT, Borroto-Nordelo C (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. Cryo-Letters 19:171–176

    Google Scholar 

  • Meyer GM, Banasiak M, Ntoyi TT (2009) Sugarcane plants from temporary immersion culture: acclimatising for commercial production. Acta Hortic 812:323–327

    Article  Google Scholar 

  • Mordocco A (2006) Bureau of sugar experiment station, Queensland (Personal communication)

    Google Scholar 

  • Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450

    Article  CAS  Google Scholar 

  • Mulleegadoo KD, Dookun A (1999) Effect of explant source and genotype on growth of sugar cane in vitro. Rev Agric Sucr l’Île Maurice 78:35–39

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadar HM, Heinz DJ (1977) Root and shoot development from sugarcane callus tissue. Crop Sci 17:814–816

    Article  Google Scholar 

  • Nagai C (1986) Micropropagation of H75-8776. Annual report 1986, Experimental Station, Hawaiian Sugar Planters’ Association, Hawaii, pp 4–5

    Google Scholar 

  • Nagai C (1988) Micropropagation of sugarcane. Annual report 1988, Laboratory methodology: Experimental Station, Hawaiian Sugar Planters’ Association, Hawaii, pp A34–A37

    Google Scholar 

  • Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252

    Article  CAS  Google Scholar 

  • Naritoom K, Sooksathan K, Korpradittskul V et al (1993) Plant regeneration from shoot tip culture of sugarcane. Kasetsart J Nat Sci 27:286–291

    Google Scholar 

  • Naz S, Ali A, Siddique A (2008) Somatic embryogenesis and plantlet formation in different varieties of sugarcane (Sacchraum officinarumL.) HSF-243 and HSF-245. Sarhad J Agric 24:593–598

    Google Scholar 

  • Nerkar YS (2006) Strategy for the production and supply of adequate sugarcane seed for Maharashtra. In: Sugarcane seed certification manual, first state level training programme for officers of Maharashtra seed certification agency, Vasantdada Sugar Institute, Pune, pp 1–5

    Google Scholar 

  • Niaz F, Quraishi A (2002) Effect of growth regulators on the regeneration potential of two sugarcane cultivars SPF-213 and CPF-237. Pak J Biol Sci 5:1081–1083

    Article  Google Scholar 

  • Nickell LG (1964) Tissue and cell cultures of sugarcane: another research tool. Hawaii Planters Rec 57:223–229

    Google Scholar 

  • Nkwanyana PD, Snyman SJ, Watt MP (2010) Micropropagation of sugarcane (Saccharum spp. hybrids) in vitro: a comparison between semi-solid and liquid RITA® temporary immersion culture systems with respect to plant production and genotypic and phenotypic fidelity. SA J Bot 76:400

    Article  Google Scholar 

  • Oropeza M, Marcano AK, Garcia A (2001) Proteins related with embryogenic potential in callus and cell suspensions of sugarcane (Saccharum sp.) In Vitro Cell Dev Biol Plant 37:211–216

    Article  CAS  Google Scholar 

  • Orshinsky KK, McGregor LJ, Johnson GIE (1990) Improved embryoid induction and green shoot regeneration from wheat anthers cultured in medium with phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 35:1016–1023

    Google Scholar 

  • Pandey RN, Rastogi J, Sharma ML et al (2011) Technologies for cost reduction in sugarcane micropropagation. Afr J Biotechnol 10:7805–7813

    Article  Google Scholar 

  • Parmessur Y, Aljanabi S, Dookun-Saumtally SS et al (2002) Sugarcane yellow leaf virus and sugarcane yellow phytoplasma: elimination by tissue culture. Plant Pathol 51:561–566

    Article  Google Scholar 

  • Patel SR, Patel CL, Patil AD et al (1999) The effect of media composition on establishment and growth of in vitro sugarcane meristem. Ind Sugar 69:277

    Google Scholar 

  • Pathak S, Lal M, Tiwari AK et al (2009) Effect of growth regulators on in vitro multiplication and rooting of shoot cultures in sugarcane. Sugar Tech 11:86–88

    Article  CAS  Google Scholar 

  • Pawar V, Patil C, Jambhale M et al (2002) Rapid multiplication of commercial sugarcane varieties through tissue culture. Ind Sugar 52:183–186

    Google Scholar 

  • Pillay L, Berry SD, Rutherford RS (2003) Eradicating sugarcane yellow leaf virus in sugarcane variety N32 through tissue culture. Proc S Afr Sugar Tech Ass 7:142–145

    Google Scholar 

  • Raemakers CJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Article  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Ramanand, Lal M (2004) An efficient protocol for in vitro micropropagation of sugarcane. Sugar Tech 6:85–87

    Article  Google Scholar 

  • Ramanand, Kureel N, Subhanand N et al (2006) Plantlet regeneration through leaf callus culture in sugarcane. Sugar Tech 8:85–87

    Article  Google Scholar 

  • Ramanand, Singh N, Kureel ML et al (2007) Effect of transplanting spacing on growth and yield of tissue culture raised crop of sugarcane. Ind Sugar 57:33–36

    Google Scholar 

  • Ramgareeb S, Snyman S, van Antwerpen T (2010) Elimination of virus and rapid propagation of disease free sugarcane (Saccharum spp cultivar NCO 376) using apical meristem culture. Plant Cell Tissue Organ Cult 100:175–181

    Article  Google Scholar 

  • Ramin AA (2003) In vitro propagation of sugarcane (Saccharum officinarum). J Sci Tech Agric Nat Resour 7:41–50

    Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants. A critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  • Raza S, Qamarunisa S, Hussain M et al (2012) Regeneration sugarcane via somatic embryogenesis and genomic instability in regenerated plants. J Crop Sci Biotech 15:131–136

    Article  Google Scholar 

  • Razi-ud-Din Shah SS, Hassan SW, Ali S et al (2004) Micropropagation of sugarcane through bud culture. Sarhad J Agric 20:12–15

    Google Scholar 

  • Reddy S, Sreenivasulu P (2011) Generation of sugarcane streak mosaic virus -free sugarcane (Saccharum spp. hybrid) from infected plants by in vitro meristem tip culture. Eur J Plant Pathol 130:597–604

    Article  CAS  Google Scholar 

  • Rotor G (1949) A method of vegetative propagation of Phalaenopsis species and hybrids. Am Orchid Soc Bull 18:738–739

    Google Scholar 

  • Roy PK, Kabir MH (2007) In vitro mass propagation of sugarcane (Saccharum officinarum L.) var. Isd 32 through shoot tips and folded leaves culture. Biotechnology 6:588–592

    Article  CAS  Google Scholar 

  • Salokhe S (2016) Production of disease free quality sugarcane planting material through micropropagation. Int J Innov Res Sci Eng 2:97–103

    Google Scholar 

  • Sandhu SK, Gosal SS, Thind KS et al (2009) Field performance of micropropagated plants and potential of seed cane for stalk yield and quality in sugarcane. Sugar Tech 11:34–38

    Article  Google Scholar 

  • Sauvaire D, Galzy R (1978) Multiplication vegetative de canne a sucre (Saccharum sp.) par bouturage in vitro. CR Acad Sc Paris Ser 287:467–470

    Google Scholar 

  • Sawant RA, Tawar PN, Meti NT et al (2014) Role of sugarcane micropropagation for production of quality seed. Int J Rec Biotech 2:34–41

    Google Scholar 

  • Sengar K, Sengar RS, Kumar S et al (2011) The effect of in-vitro environmental conditions on some sugarcane varieties for micropropagation. Afr J Biotechnol 10:17122–17126

    Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS et al (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310

    CAS  Google Scholar 

  • Shukla R, Khan AQ, Garg SK (1994) In vitro clonal propagation of sugarcane: optimization of media and hardening of plants. Sugarcane 4:21–23

    Google Scholar 

  • Siddiqui SH, Khan IA, Khatri A et al (1994) Rapid multiplication of sugarcane through micropropagation. Pak J Agric Res 15:134–136

    Google Scholar 

  • Singh G, Shetty S (2011) Impact of tissue culture on agriculture in India. Biotechnol Bioinformatics Bioeng 1:279–288

    Google Scholar 

  • Singh B, Yadav GC, Lal M (2001) An efficient protocol for micropropagation of sugarcane using shoot tip explants. Sugar Tech 3:113

    Article  Google Scholar 

  • Singh N, Kumar A, Garg GK (2006) Genotype dependent influence of phytohormone combination and sub culturing on micropropagation of sugarcane varieties. Indian J Biotechnol 5:99–106

    CAS  Google Scholar 

  • Sinha OK (2006) Proceedings of the meeting on issues related to standards for seed/tissue culture raised material. Indian Institute of Sugarcane Research, Lucknow

    Google Scholar 

  • Smulders MJM, de Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Snyman SJ, Antwerpen TV, Ramdeen V et al (2005) Micropropagation by direct somatic embryogenesis: is disease elimination also a possibility? Proc Aust Soc Sugar Cane Technol 27:943–947

    Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM et al (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 35:1016–1023

    Article  CAS  Google Scholar 

  • Snyman SJ, Meyer GM, Banasiak M et al (2008) Micropropagation of sugarcane via NOVACANE®: preliminary steps in commercial application. Proc S Afr Sugar Technol Ass 81:513–516

    Google Scholar 

  • Sood N, Gupta PK, Srivastava RK et al (2006) Comparative studies on field performance of micropropagated and conventionally propagated sugarcane plants. Plant Tissue Cult Biotechnol 16:25–29

    Google Scholar 

  • Sreenivasan TV, Jalaja NC (1981) Utilization of tissue culture technique in sugarcane improvement. In: C. Meristem culture. Annual report. Sugarcane Breeding Institute, Coimbatore, p 68

    Google Scholar 

  • Sreenivasan TV, Jalaja NC (1992) Micropropagation of sugarcane varieties for increasing cane yield. SISSTA J 19:61–64

    Google Scholar 

  • Steward FC, Mapes ΜΟ, Smith J (1958) Growth and organized development of cultured cells. Growth and division of suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Sundara B (2000) Sugarcane cultivation. Vikas Publishing House Pvt. Ltd., New Delhi, p 302

    Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111:131–141

    Article  CAS  Google Scholar 

  • Tarafdar S, Meena R, Dhurandhar K et al (2014) Development of protocol for mass multiplication of two elite varieties of sugarcane through micropropagation. Int J Plant Anim Environ Sci 4:167–171

    CAS  Google Scholar 

  • Tawar PN (2006) Tissue culture plantlets in sugarcane seed production. In: Sugarcane seed certification manual. First state level training Programme for officers of Maharashtra seed certification agency. Vasantdada Sugar Institute, Pune, pp 27–30

    Google Scholar 

  • Taylor PWJ (1994) Tissue culture technique for developing disease resistant in sugarcane. In: Rao GP, Upadhyaya PP, Chen CT, Gillaspie AG, Filho AB, Agnihotri VP (eds) Current trends in sugarcane pathology. Vedams Books, India, pp 311–331

    Google Scholar 

  • Taylor PWJ, Duke S (1993) Development of an in vitro culture technique for conservation of Saccharum sp. Plant Cell Tissue Organ Cult 34:217–222

    Article  CAS  Google Scholar 

  • Tesfa M, Admassu B, Bantte K (2016) In vitro rooting and acclimatization of micropropagated elite sugarcane (Saccharum officinarum L.) genotypes – N52 and N53. J Tissue Sci Eng 7:164

    Article  CAS  Google Scholar 

  • Tiwari AK, Tripathi S, Lal M et al (2011) Elimination of sugarcane grassy shoot disease through apical meristem culture. Arch Phytopathol Plant Protect 44:1942–1948

    Article  Google Scholar 

  • Tiwari S, Arya A, Kumar S (2012) Standardizing sterilization protocol and establishment of callus culture of sugarcane for enhanced plant regeneration in vitro. Res J Bot 7:1–7

    Article  CAS  Google Scholar 

  • Tiwari S, Arya A, Yadav P et al (2013) Enhanced in vitro regeneration of two sugarcane varieties CoS 8820 and CoS 767 through organogenesis. Ind J Fund Appl Life Sci 3:17–26

    Google Scholar 

  • Ulrich JM, Finkle BJ, Moore PH (1984) Frozen preservation of cultured sugarcane cells. Sugarcane 3:11–14

    Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD et al (2005) Tissue culture and biolistic transformation of callus have independent effects on yield and sugar content of transgenic sugarcane in the field. Aust J Agric Res 56:57–68

    Article  CAS  Google Scholar 

  • Visessuwan R, Chiemsombat P, Naritoom K et al (1999) Role of growth regulators in meristem culture and production of virus-free sugarcane germplasm. Sugar Tech 1:82–88

    Article  Google Scholar 

  • Wagih ME, Gordon GH, Ryan CC et al (1995) Development of an axillary bud culture technique for Fiji disease virus elimination in sugarcane. Aust J Bot 43:135–143

    Article  Google Scholar 

  • Wagih ME, Adkins SW, Attia K (2009) Establishment of mature axillary bud culture of sugarcane and overcoming persistent culture contamination. Ind J Sci Technol 2:18–25

    Google Scholar 

  • Warakagoda PS, Subasinghe S, Kumari DLC et al (2007) Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds. In: Proceedings of the fourth academic sessions, University of Ruhuna, Mapalana, Kamburupitiya, p 55–60

    Google Scholar 

  • Wekesa R, Onguso JM, Nyende BA, Wamocho LS (2015) Sugarcane in vitro culture technology: opportunities for Kenya’s sugar industry. Afr J Biotechnol 14:3170–3178

    Article  CAS  Google Scholar 

  • Widuri LI, Dewanti P, Suhargito dan B (2016) A simple protocol for somatic embryogenesis induction of in vitro sugarcane (Saccharum officinarum. L) by 2,4-D and BAP. Biovalentia Biol Res J 2:1–9

    Article  Google Scholar 

  • Yadav S, Ahmad A (2013) Standardisation of callus culture techniques for efficient sugarcane micropropagation. CIBTech J Bio Protocol 2:29–32

    Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Zamir R, Khalil SA, Shah ST et al (2012) Efficient in vitro regeneration of sugarcane (Saccharum officinarum L.) from bud explants. Biotechnol Biotechnol Equip 26:3094–3099

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucchi MI, Arizono H, Morais VA et al (2002) Genetic instability of sugarcane plants derived from meristem culture. Genet Mol Biol 25:91–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, A., Malhotra, P.K., Manchanda, P., Gosal, S.S. (2018). Micropropagation and Somatic Embryogenesis in Sugarcane. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_2

Download citation

Publish with us

Policies and ethics