Skip to main content
Log in

Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study investigated the ability of a light emitting diode (LED) to induce somatic embryogenesis (SE), shoot multiplication, and rooting of sugarcane (RB98710). We also accessed the effects on acclimatization. MS medium was used for all stages and was supplemented with different concentrations of growth regulators according to the culture stage. The material was maintained in a growth room under fluorescent (FL) or LED (82 % red, 18 % blue) lighting after rooting plants were acclimatized. We conducted both biometric and biochemical analyses before and after acclimatization. The LED conditions favored the formation of callus; however, the FL was more efficient at plant regeneration. A histological analysis showed the formation of somatic embryos occurred through direct and indirect pathways. The plants obtained through SE and grown under LED had a higher multiplication rate over six subcultures. Shoots rooted in both light sources, but the number of shoots and the weight gain of the roots were higher under LED. The malondialdehyde (MDA) level did not differ among treatments. Our results indicate the SE induction phase should be conducted under FL and the remaining micropropagation process should be performed using LED. After acclimatization the plants grown under LED did not change the SOD and CAT activities during the first 5 days, which suggests there was no acclimatization impact. The H2O2 and MDA values observed do not suggest damage to membranes. There was better development, lower water loss, and higher survival rate in plants from in vitro culture under LED conditions when compared to FL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed MR, Anis M (2014) Changes in activity of antioxidant enzymes and photosynthetic machinery during acclimatization of micropropagated Cassia alata L. plantlets. In Vitro Cell Dev Biol Plant 50:601–609

    Article  CAS  Google Scholar 

  • Alcantara GB, Dibax R, Bespalhok Filho JC, Daros E (2014) Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454. Acta Sci Agron 36:63–72

    Article  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karano E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ Exp Bot 54:109–120

    Article  CAS  Google Scholar 

  • Alvarez C, Sáez P, Sáez K et al (2012) Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana mol. Plant Cell Tissue Org 110:93–101

    Article  CAS  Google Scholar 

  • Arruda P (2011) Perspective of the sugarcane industry in Brazil. Trop Plant Biol 4:3–8

    Article  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Barbosa MR, Silva MMA, Willadino L et al (2014) Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Cienc Rural 44(3):453–460

    Article  CAS  Google Scholar 

  • Basnayake SWV, Moyle R, Birch RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30:439–448

    Article  CAS  PubMed  Google Scholar 

  • Berrs LSJ, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Canhoto JM (2010) Biotecnologia vegetal: da clonagem de plantas à transformação genética, 1st edn. Imprensa da Universidade de Coimbra, Coimbra, pp 407

    Book  Google Scholar 

  • Cetene, Centro de Tecnologias Estratégicas do Nordeste (2008) Projeto Cana de Meristema para o Nordeste. INT, Recife, pp 24

    Google Scholar 

  • Chung JP, Huang CY, Dai TE (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124:511–516

    Article  CAS  Google Scholar 

  • Cia MC, Guimarães ACR, Medici LO et al (2012) Antioxidant responses to water deficit by drought-tolerant and-sensitive sugarcane varieties. Ann Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Conab, Companhia Nacional de Abastecimento (2015) Acompanhamento da safra brasileira de cana-de-açúcar—safra 2015/2016, Brasília 2(1):1–28

  • Dami I, Hughes, H (1995) Leaf anatomy and water loss of in vitro PEG-treated ‘Valiant’ grape. Plant Cell Tissue Org 42:179–184

    Article  Google Scholar 

  • Dias MC, Pinto G, Correia CM et al (2013) Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biol Plant 57:33–40

    Article  CAS  Google Scholar 

  • Faisal M, Anis M (2009) Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets. Plant Cell Tissue Org 99:125–132

    Article  CAS  Google Scholar 

  • Folta KM, Koss LL, McMorrow R et al (2005) Design and fabrication of adjustable red-green blue LED light arrays for plant research. BMC Plant Biol 23:5–17

    Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Planta 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Neukermans J, Queval G et al (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63(4):1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X-Q, Hu J-B, Liu J-H (2014) Cloning and characterization of FcWRKY40, A WRKY transcription factor from Fortunella crassifolia linked to oxidative stress tolerance. Plant Cell Tissue Org 119:197–210

    Article  CAS  Google Scholar 

  • Gu A, Liu W, Ma C, Cui J (2012) Regeneration of Anthurium andraeanum from leaf explants and evaluation of microcutting rooting and growth under different light qualities. HortScience 47:88–92

    CAS  Google Scholar 

  • Guerra MP, Torres AC, Teixeira JB (1999) Embriogênese somática e sementes sintéticas. In: Torres AC, Caldas LS, Buso JA (eds) Cultura de tecidos e transformação genética de plantas, 2nd ed. SPI/Embrapa, Brasília, pp 533–568

    Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Gupta SD, Sahoo TK (2015) Light emitting diode (LED) induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn. Acta Physiol Plant 37:233

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, Inc., New York, p 523

    Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshamanan P (2010) Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Sandhu JS (2015) High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: cost analysis for agri-business industry. Plant Cell Tissue Org 120:339–350

    Article  CAS  Google Scholar 

  • Koch AC, Ramgareeb S, Rutherford RS et al (2012) An in vitro mutagenesis protocol for the production of sugarcane tolerant to the herbicide Imazapyr. In Vitro Cell Dev Biol Plant 48:417–427

    Article  CAS  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Soropédica, p 98

    Google Scholar 

  • Lichtenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu M, Xu Z, Guo S et al (2014) Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandifolium (Jacq.) A. DC.) plantlets in vitro under different light spectra. Sci Hortic 174:112–118

    Article  CAS  Google Scholar 

  • Locato V, Pinto MC, Paradiso A, Gara L (2010) Reactive oxygen species and ascorbate–glutathione interplay in signaling and stress responses. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, Enfield, pp 45–64

    Chapter  Google Scholar 

  • Maluta FA, Bordignon SR, Rossi ML et al (2013) Cultivo in vitro de cana-de-açúcar exposta a diferentes fontes de luz. Pesq Agropec Bras 48(9):1303–1307

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N et al (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hort Environ Biotechnol 56:105–113

    Article  CAS  Google Scholar 

  • Menezes TSA, Santos TCS, Arrigoni-Blank MF, Blank AF (2012) Embriogênese somática de variedades superiores de cana-de-açúcar (Saccharum spp.). Geintec 2(1):32–41

    Article  Google Scholar 

  • Mengxi L, Zhigang X, Yang Y, Yijie F (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Org 106:1–10

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Assada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nawaz M, Ullah I, Iqbal N et al (2013) Improving in vitro leaf disk regeneration system of sugarcane (Saccharum officinarum L.) with concurrent shoot/root induction from somatic embryos. Turk J Biol 37:726–732

    Article  CAS  Google Scholar 

  • Nhut DT, Takamura T, Watanabe H et al (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Org 73:43–52

    Article  CAS  Google Scholar 

  • Nhut DT, Huya NP, Taia NT et al (2015) Light-emitting diodes and their potential in callus growth, plantlet development and saponin accumulation during somatic embryogenesis of Panax vietnamensis Ha et Grushv. Biotechnol Biotechnol Equip 29(2):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves N, Segura-Nieto M, Blanco MA et al (2003) Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cell Dev Biol Plant 39:343–345

    Article  CAS  Google Scholar 

  • Oliveira RP, Rocha PSG, Scivittano WB (2011) Estruturação de Sistema de LEDs em Laboratório de Cultura de Tecidos. Circular Técnica, Embrapa 121:1–6

  • Pasa MS, Carvalho GL, Schuch MW et al (2012) Qualidade de luz e fitorreguladores na multiplicação e enraizamento in vitro da amoreira-preta ‘Xavante’. Cienc Rural 42(8):1392–1396

    Article  CAS  Google Scholar 

  • Ridesa, Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro (2010) Liberação nacional de novas variedades “RB” de cana-de-açúcar, Curitiba, pp 64

  • Rocha PSG, Oliveira RP, Scivittaro WB, Santos UL (2010) Diodos emissores de luz e concentrações de BAP na multiplicação in vitro de morangueiro. Cienc Rural 40(9):1922–1928

    Article  Google Scholar 

  • Rocha PSG, Oliveira RP, Scivittaro WB (2013) Sugarcane micropropagation using light emitting diodes and adjustment in growth-medium sucrose concentration. Cienc Rural 43(7):1168–1173

    Article  Google Scholar 

  • Rodríguez-Sahagún A, Acevedo-Hernández G, Rodríguez-Domínguez JM et al (2011) Effect of light quality and culture medium on somatic embryogenesis of Agave tequilana Weber var. azul. Plant Cell Tissue Org 104(2):271–275

    Article  Google Scholar 

  • Samuolienè G, Urbonaviciute A, Brazaityte A et al (2011) The impact of LED illumination on antioxidant properties of sprouted seeds. Cent Eur J Biol 6:68–74

    Google Scholar 

  • Schmildt O, Torres Netto A, Schmildt ER et al (2014) Photosynthetic capacity, growth and water relations in ‘Golden’ papaya cultivated in vitro with modifications in light quality, sucrose concentration and ventilation. Theor Exp Plant Physiol 27:7–18

    Article  Google Scholar 

  • Segatto FB, Bisognin DA, Benedetti M (2004) Técnica para o estudo da anatomia da epiderme foliar de batata. Cienc Rural 34(5):1597–1601

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Silva MMA, Ulisses C, Medeiros MJL et al (2014) Antioxidant enzymes activity in embryogenic and non-embryogenic tissues in sugarcane. Acta Biol Colomb 19:203–210

    Article  Google Scholar 

  • Silveira V, Vita AM, Macedo AF et al (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tissue Org 114:351–364

    Article  CAS  Google Scholar 

  • Snyman SJ, Meyer GM, Koch AC et al (2011) Applications of in vitro culture systems for commercial sugarcane production and improvement. In Vitro Cell Dev Biol Plant 47:234–249

    Article  CAS  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA et al (2008) Singlet oxygen is the major reactive oxygen species involved in photo-oxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Vyver C (2010) Genetic transformation of the euploid Saccharum officinarum via direct and indirect embryogenesis. Sugar Tech 12:21–25

    Article  Google Scholar 

  • Vieira LN, Fraga HPF, Anjos KG et al (2015) Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets. Theor Exp Plant Physiol 27:91–98

    Article  CAS  Google Scholar 

  • Wu MC, Hou CY, Jiang CM et al (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758

    Article  CAS  Google Scholar 

  • Zou J, Liu C, Liu A et al (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting the master’s scholarship to the first author, and the Biofactory Governor Miguel Arraes (CETENE, Recife, Brazil) for providing the sugarcane plants.

Authors contributions

L. T. Ferreira conducted the experiment, performed laboratory and data analysis, and helped write the manuscript. C. Ulisses and T. R. Camara provided support in the planning and interpretation of results. M. M. A. Silva and L. Willadino planned the study, guided during the course of the experiment, discussed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Medeiros de Araújo Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.T., de Araújo Silva, M.M., Ulisses, C. et al. Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tiss Organ Cult 128, 211–221 (2017). https://doi.org/10.1007/s11240-016-1101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1101-7

Keywords

Navigation