Skip to main content

Phytoremediation of Salt-Impacted Soils and Use of Plant Growth-Promoting Rhizobacteria (PGPR) to Enhance Phytoremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

Soil salinization negatively impacts plant growth and soil structure, which leads to environmental stress and agricultural/economic losses. Improved plant growth during salt-induced ionic and osmotic plant stress is the key to successful phytoremediation of salt-impacted sites. Using plant growth-promoting rhizobacteria (PGPR) in PGPR-Enhanced Phytoremediation Systems (PEPS), positive effects of PGPR on plant biomass and health have been observed in greenhouse and field experiments. Revegetation is arguably the most important aspect of salt phytoremediation and substantial biomass increases occur in PGPR-treated plants in both sodic and saline soils. PGPR protect against inhibition of photosynthesis and plant membrane damage, which suggests that they confer tolerance to plants under salt stress. Using PEPS, decreases in soil salinity are observed due to uptake of sodium and chloride from the soil into foliar plant tissue. Although rates of uptake do not change due to PGPR inoculation, higher plant biomass due to PGPR enhancement of plant performance leads to greater salt uptake on a per area basis relative to that of untreated plants. Significant improvements in plant growth and commensurate sodium chloride uptake, and the results of mass balance studies used to assess the direct impact of ion uptake on actual observed changes in soil salinity, provide evidence that phytoremediation of salt-impacted soil is feasible within acceptable time frames using PEPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaushal J, Bhasin SK, Bhardwaj P (2015) Phytoremediation: a review focusing on phytoremediation mechanisms. Int J Res Chem Environ 5:1–9

    Google Scholar 

  2. Willey N. (2007) Preface. In: Willey N (ed) Methods in biotechnology. Phytoremediation: methods and reviews, vol 23. Humana Press, Totowa, NJ, p ν

    Google Scholar 

  3. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  4. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  5. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  6. Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 239–258

    Chapter  Google Scholar 

  7. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  8. de Bashan LE, Hernandez J-P, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  9. Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  10. Gerhardt KE, Gerwing PD, Huang X-D, Greenberg BM (2015) Microbe-assisted phytoremediation of petroleum impacted soil: a scientifically proven green technology. In: Fingas M (ed) Handbook of oil spill science and technology. Wiley, Hoboken, NJ, pp 407–427

    Google Scholar 

  11. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  12. Singer AC, Thompson IP, Bailey MJ (2004) The tritrophic trinity: a source of pollutant-degradaing enzymes and its implications for phytoremediation. Curr Opin Microbiol 7:239–244

    Article  CAS  PubMed  Google Scholar 

  13. Wenzel W (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  14. Jesus JM, Danko AS, Fiúza A, Borges M-T (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525. doi:10.1007/s11356-015-4205-4

    Article  CAS  Google Scholar 

  15. Hasanuzzaman M, Nahar K, Alam M, Bhowmik PC, Hossain A, Rahman MM et al (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int 2014:589341. doi:10.1155/2014/589341

    PubMed  PubMed Central  Google Scholar 

  16. Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A (ed) Abiotic stress in plants—echanisms and adaptations. InTech Europe, Rijeka, Croatia, pp 21–38

    Google Scholar 

  17. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ et al (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  18. Qadir M, Oster JD (2002) Vegetative bioremediation of calcareous sodic soils: history, mechanisms and evaluation. Irrig Sci 21:91–101

    Article  Google Scholar 

  19. Singh KN, Chatrath R (2001) Salinity tolerance. In: Reynolds MP, Monasterio JIO, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, DF, pp 101–110

    Google Scholar 

  20. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources. CAB International, Canberra

    Google Scholar 

  21. United Nations University Institute for Water, Environment and Health (UNU-INWEH) (2014) World losing 2,000 hectares of farm soil daily to salt-induced degradation. http://inweh.unu.edu/world-losing-farm-soil-daily-salt-induced-degradation/. Accessed 11 Nov 2015

  22. Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128:1251–1258

    Article  CAS  PubMed  Google Scholar 

  23. US Geological Survey (USGS) (2015) Where do the salts go?: a lesson from an ancient civilization. http://pubs.usgs.gov/fs/fs-170-98/. Accessed 11 Nov 2015

  24. Alberta Environment, Environmental Sciences Division (2001) Salt Contamination Assessment & Remediation Guidelines, Pub. No. T/606 [Internet]. Alberta Environment, Edmonton, AB. environment.gov.ab.ca/info/library/6144.pdf. Accessed 16 Nov 2015

  25. Renault S, MacKinnon M, Qualizza C (2003) Barley, a potential species for early reclamation of saline oil sands composite tailings. J Environ Qual 32:2245–2253

    Article  CAS  PubMed  Google Scholar 

  26. Saskatchewan Petroleum Industry/Government Environmental Committee (SPIGEC) (2009) Guideline No. 4, Saskatchewan upstream petroleum sites remediation guidelines [Internet]. Regina, SK. http://www.environment.gov.sk.ca/Default.aspx?DN=676d3b44-b996-478b-846b-e87406b67880&c=all&q=spigec. Accessed 16 Nov 2015

  27. US Environmental Protection Agency (2015) Class II Wells—oil and gas related injection wells (Class II). http://water.epa.gov/type/groundwater/uic/class2/. Accessed 10 Nov 2015

  28. Matthews JG, Shaw WH, MacKinnon MD, Cuddy RG (2002) Development of composite tailings technology at Syncrude. Int J Surf Mining Reclam Environ 16:24–39

    Article  CAS  Google Scholar 

  29. Environment Canada (2013) Code of practice: the environmental management of road salts [Internet]. Environment Canada, Ottawa. http://www.ec.gc.ca/sels-salts/default.asp?lang=En&n=F37B47CE-1. Accessed 16 Nov 2015

  30. Environment Canada/Health Canada. Canadian Environmental Protection Act (1999) Priority substances list assessment report—road salts [Internet]. Environment Canada/Health Canada, Ottawa. http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-lsp2/road_salt_sels_voirie/index-eng.php. Accessed 16 Nov 2015

  31. US Salinity Laboratory Staff (1954) Saline and alkali soils: diagnosis and improvement, Handbook No. 60 [Internet]. USDA, Washington, DC. http://www.ars.usda.gov/News/docs.htm?docid=10158&page=2. Accessed 16 Nov 2015

  32. Seelig BD (2000) Salinity and sodicity in North Dakota soils—EB 57 [Internet]. NDSU Extension Service, North Dakota State University of Agriculture and Applied Science/U.S. Department of Agriculture, Fargo, ND. https://www.ndsu.edu/soilhealth/wp-content/uploads/2014/07/ND-saline-sodic-soils_20001.pdf. Accessed 16 Nov 2015

  33. Zhu J-K (2007) Plant salt stress. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0001300.pub2. Accessed 11 Nov 2015

  34. Hu F, Li H, Liu X, Li S, Ding W, Xu C et al (2015) Quantitative characterization of non-classic polarization of cations on clay aggregate stability. PLoS One 10:e0122460. doi:10.1371/journal.pone.0122460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Levy GJ, Van Der Watt HVH (1990) Effect of exchangeable potassium on the hydraulic conductivity and infiltration rate of some South African soils. Soil Sci 149:69–77

    Article  CAS  Google Scholar 

  36. Qadir M, Oster JD, Schubert S, Noble AD, Sahrawatk KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247. doi:10.1016/S0065-2113(07)96006-X

    Article  CAS  Google Scholar 

  37. Qadir M, Steffens D, Yan F, Schubert S (2003) Sodium removal from a calcareous saline–sodic soil through leaching and plant uptake during phytoremediation. Land Degrad Dev 14:301–307

    Article  Google Scholar 

  38. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  39. Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    Article  CAS  PubMed  Google Scholar 

  40. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  41. Barkla BJ, Pantoja O (2011) Plasma membrane and abiotic stress. In: Angus SM, Peer W, Schulz B (eds) The plant plasma membrane—plant cell monographs, vol 19. Springer, Berlin, pp 457–470

    Chapter  Google Scholar 

  42. Kang S-M, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. doi:10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  43. Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480

    CAS  Google Scholar 

  44. Neocleous D, Koukounaras A, Siomos AS, Vasilakakis M (2014) Changes in photosynthesis, yield, and quality of baby lettuce under salinity stress. J Agric Sci Technol 16:1335–1343

    Google Scholar 

  45. Shibli RA, Kushad M, Yousef GG, Lila MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. J Plant Growth Regul 51:159–169

    Article  CAS  Google Scholar 

  46. Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811. doi:10.1152/physrev.00038.2011

    Article  CAS  PubMed  Google Scholar 

  47. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  48. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31. doi:10.1016/j.envexpbot.2013.03.001

    Article  CAS  Google Scholar 

  49. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  50. Almeida P, Katschnig D, de Boer AH (2013) HKT transporters—state of the art. Int J Mol Sci 14:20359–20385. doi:10.3390/ijms141020359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254. doi:10.1016/j.febslet.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  52. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG et al (2011) A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70

    Article  CAS  PubMed  Google Scholar 

  53. Waters S, Gilliham M, Hrmova M (2013) Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 14:7660–7680. doi:10.3390/ijms14047660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008) Na+-K+ transport in roots under salt stress: article addendum. Plant Signal Behav 3:401–403

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410

    Article  CAS  Google Scholar 

  56. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  57. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  58. Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plant 20:201–207

    Article  CAS  Google Scholar 

  59. Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283. doi:10.1093/jxb/ert423

    Article  CAS  PubMed  Google Scholar 

  60. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. doi:10.1155/2012/217037

    Google Scholar 

  61. Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88

    Article  CAS  Google Scholar 

  62. Singh S, Khatri N, Katiyar A, Mudgil Y (2015) Molecular approaches in deciphering abiotic stress signaling mechanisms in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives, vol 1. Springer, New York, pp 41–73

    Chapter  Google Scholar 

  63. Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21. doi:10.3389/fenvs.2015.00021

    Article  Google Scholar 

  64. Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Khaki M, Pedrajas JR et al (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459

    Article  CAS  PubMed  Google Scholar 

  65. Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:154. doi:10.3389/fpls.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  67. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  68. Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu J, Fu X, Koo YD, Zhu J-K, Jenney FE Jr, Adams MWW et al (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27:5214–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  71. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  72. Gao H-J, Yang H-Y, Bai J-P, Liang X-Y, Lou Y, Zhang J-L et al (2015) Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front Plant Sci 5:787. doi:10.3389/fpls.2014.00787

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kumar K, Kumar M, Kim S-R, Ryu H, Cho Y-G (2013) Insights into genomics of salt stress response in rice. Rice 6:27. doi:10.1186/1939-8433-6-27

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427. doi:10.3389/fpls.2015.00427

    Article  PubMed  PubMed Central  Google Scholar 

  75. Uozumi N, Schroeder JI (2010) Ion channels and plant stress: past, present and future. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses. Springer, Berlin, pp 1–22

    Chapter  Google Scholar 

  76. Gorham J, Wyn Jones RG, McDonnell E (1985) Some mechanisms of salt tolerance in crop plants. Plant Soil 89:15–40

    Article  CAS  Google Scholar 

  77. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  78. Walter H (1961) Salinity problems in the acid zones. The adaptations of plants to saline soils. Arid Zone Res 14:65–68

    Google Scholar 

  79. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216

    Article  CAS  Google Scholar 

  81. Ammari TG, Al-Hiary S, Al-Dabbas M (2013) Reclamation of saline calcareous soils using vegetative bioremediation as a potential approach. Arch Agron Soil Sci 59:367–375. doi:10.1080/03650340.2011.629813

    Article  CAS  Google Scholar 

  82. Hue NV, Campbell S, Li QX, Lee CR, Fong J (2002) Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants. Remed J 12:45–63

    Article  Google Scholar 

  83. Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD et al (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediat 16:1133–1147

    Article  CAS  Google Scholar 

  84. Greenberg BM, Gerwing P, Huang X-D (2011) A novel phytoremediation technology used to successfully treat salt impacted soils in situ. Can Reclam 11:8–12

    Google Scholar 

  85. Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660. doi:10.1021/ie100270x

    Article  CAS  Google Scholar 

  86. Ozawa T, Wu J, Fujii S (2007) Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Sci Plant Nutr 53:12–16

    Article  CAS  Google Scholar 

  87. Bennett TH, Flowers TJ, Bromham L (2013) Repeated evolution of salt-tolerance in grasses. Biol Lett 9:20130029. doi:10.1098/rsbl.2013.0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flowers TJ (2004) Improving crop salt-tolerance. J Exp Biol 55:307–319

    CAS  Google Scholar 

  89. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428. doi:10.1093/jxb/ers033

    Article  CAS  PubMed  Google Scholar 

  90. Gerhardt KE, Greenberg BM, Glick BR (2006) The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Curr Trends Microbiol 2:61–72

    CAS  Google Scholar 

  91. Huang X-D, El-Alawi YS, Penrose D, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  92. Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293. doi:10.1111/plb.12173

    Article  CAS  PubMed  Google Scholar 

  93. Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  94. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  95. Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré W (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microb Interact 21:737–744

    Article  CAS  Google Scholar 

  96. Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  97. Xie S-S, Wu H-J, Zang H-Y, Wu L-M, Zhu Q-Q, Gao X-W (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microb Interact 27:655–663. doi:10.1094/MPMI-01-14-0010-R

    Article  CAS  Google Scholar 

  98. Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390

    Article  CAS  Google Scholar 

  99. Barriuso J, Ramos Solano B, Gutierrez Manero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  100. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi:10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yildrim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr 31:2059–2074

    Article  CAS  Google Scholar 

  102. Kiliç CC, Kukul YS, Ana D (2008) Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agric Water Manage 95:854–858

    Article  Google Scholar 

  103. Nazzal KE, Abdul-Kareem AW (2013) Phytoremediation of salt-affected soils at Al-Jazeera northern irrigation project/Ninavah/Iraq. Mesop J Agric 41:294–298

    Google Scholar 

  104. Hamidov A, Beltrao J, Neves A, Khaydarova V, Khamidov M (2007) Apocynum lancifolium and Chenopodium album—potential species to remediate saline soils. 3(7):123–128. http://www.worldses.org/journals/environment/environment-july2007.htm

  105. Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    Article  CAS  Google Scholar 

  106. Alberta Environment, Air, Land and Waste Policy Branch (CAN) (2010) Alberta Tier 2 Soil and Groundwater Remediation Guidelines. [Internet]. Alberta Environment, Edmonton. http://environment.gov.ab.ca/info/library/7752.pdf. Accessed 12 Nov 2015

  107. Rozena J, Flowers T (2008) Crops for a salinized world. Science 322:1478

    Article  Google Scholar 

  108. North Dakota State Government (USA) (2006) A guide for remediation of salt/hydrocarbon impacted soil. [Internet]. North Dakota Industrial Commission, Department of Mineral Resources, Bismark. https://www.dmr.nd.gov/downloads/soilRemediationGuideL.pdf . Accessed 27 Nov 2015

  109. Greenberg BM, Huang X-D, Gerwing P, Yu X-M, Chang P-C, Wu SS, et al (2008) Phytoremediation of salt impacted soils: greenhouse and field trials using plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phytoaccumulation. In: Proceedings of the 31st AMOP Technical Seminar on Environmental Contamination and Response, Ottawa, ON, Canada. Environment Canada, Ottawa, pp 627–637, 3–5 June 2008

    Google Scholar 

  110. Greenberg, BM, X-D Huang, K Gerhardt, P Mosley, X-M Yu, S Liddycoat, et al (2012) Phytoremediation of petroleum and salt impacted soils: a scientifically-based innovative remediation process. In: Proceedings of the 35th AMOP Technical Seminar on Environmental Contamination and Response, Vancouver, BC, Canada. Environment Canada, Ottawa, pp 420–433, 5–7 June 2012

    Google Scholar 

  111. Greenberg, B, X-D Huang, P Mosley, K Gerhardt, X-M Yu, S Liddycoat, et al (2014) Phytoremediation of PHC and salt impacted soil in terrestrial and riparian environments—Remediation to generic Tier 1 guideline values and soil toxicity. In: Proceedings of the 37th AMOP Technical Seminar on Environmental Contamination and Response, Canmore, AB, Canada. Environment Canada, Ottawa, pp 468–481, 3–5 June 2014

    Google Scholar 

  112. Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang X-D et al (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479

    Article  CAS  PubMed  Google Scholar 

  113. Huang X-D, El-Alawi YS, Penrose D, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  PubMed  Google Scholar 

  114. Huang X-D, El-Alawi YS, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  115. Gliessman SR, Altieri MA (1982) Polyculture cropping has advantages. Calif Agric 36:14–16

    Google Scholar 

  116. Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chang P-C (2007) The use of plant growth-promoting rhizobacteria (PGPR) and an arbuscular mycorrhizal fungus (AMF) to improve plant growth in saline soils for phytoremediation. MSc thesis. University of Waterloo, Waterloo, ON

    Google Scholar 

  118. Bhattarai T, Hess D (1993) Yield responses of Nepalese spring wheat (Triticum aestivum L) cultivars to inoculation with Azospirillum spp of Nepalese origin. Plant Soil 151:67–76

    Article  CAS  Google Scholar 

  119. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  120. Greenberg BM, X-D Huang, Y Gurska, KE Gerhardt, W Wang, MA Lampi, et al (2006) Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants. In: Proceedings of the 29th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, vol 1, Vancouver, BC, Canada. Environment Canada, Ottawa, pp 389–400, 6–8 June 2008

    Google Scholar 

  121. MacNeill G (2011) Plant-growth promoting rhizobacteria enhanced phytoremediation of saline soils and salt uptake into plant biomass. MSc thesis. University of Waterloo, Waterloo, ON

    Google Scholar 

  122. Wu SS (2009) Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). MSc thesis. University of Waterloo, Waterloo, ON

    Google Scholar 

  123. Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  124. Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. doi:10.1371/journal.pone.0058640

    Google Scholar 

  125. Asheraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  126. Gururani MA, Venkatesh J, Tran L-SP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  CAS  PubMed  Google Scholar 

  127. Jiang Q, Roche D, Monaco TA, Durham S (2006) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res 96:269–278

    Article  Google Scholar 

  128. Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress-influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Google Scholar 

  129. Meloni DA, Oliva CA (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  130. Nazir N, Ashraf M, Ejaz R (2001) Genomic relationships in oilseed Brassicas with repect to salt tolerance-photosynthetic capacity and ion relations. Pak J Bot 33:483–501

    Google Scholar 

  131. Raza SH, Athar HR, Ashraf M (2006) Influence of exogenously applied glycine betaine on photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38:341–351

    Google Scholar 

  132. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  133. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  134. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Google Scholar 

  135. Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  136. Genty B, Briantais J-M, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  137. Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166:219–226

    Article  CAS  PubMed  Google Scholar 

  138. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  139. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosyn Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  140. Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894:198–208

    Article  CAS  Google Scholar 

  141. Rosenqvist E, Kooten OV (2003) Chlorophyll fluorescence: a general description and nomenclature. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic, New York, pp 32–71

    Google Scholar 

  142. Babu TS, Marder JB, Tripuranthakam S, Dixon DG, Greenberg BM (2001) Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ Toxicol Chem 20:1351–1358

    Article  CAS  PubMed  Google Scholar 

  143. Naidoo G, Somaru R, Achar P (2008) Morphological and physiological responses of the halophyte, Odyssea paucinervis (Staph) (Poaceae), to salinity. Flora 203:437–447

    Article  Google Scholar 

  144. DeEll JR, Toivonen PMA (eds) (2003) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic, New York

    Google Scholar 

  145. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  146. Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci 47:123–131

    Article  CAS  Google Scholar 

  147. Ogle D, St. John L (2010) Plants for saline to sodic soil conditions, TN Plant Materials No. 9A. Boise, Idaho—Salt Lake City. USDA-Natural Resources Conservation Service, Utah, Feb 2010 Revision. http://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/idpmstn9328.pdf

  148. Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  149. Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. J Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  150. Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778

    Article  Google Scholar 

Download references

Acknowledgements

The work performed in the lab of B. M. G. was supported by grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Greenberg B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gerhardt, K.E., MacNeill, G.J., Gerwing, P.D., Greenberg, B.M. (2017). Phytoremediation of Salt-Impacted Soils and Use of Plant Growth-Promoting Rhizobacteria (PGPR) to Enhance Phytoremediation. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_2

Download citation

Publish with us

Policies and ethics