Skip to main content

Ion Channels and Plant Stress: Past, Present, and Future

  • Chapter
  • First Online:
Ion Channels and Plant Stress Responses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Perhaps the most significant change in plant electrophysiological studies that began some 25 years ago was a shift in focus from more basic electrical and biophysical properties of plant membranes to pursuing the understanding of the plant physiological and cell biological functions of individual plant ion channel types. In the 1990s, ion channels were characterized as targets of upstream signal transduction mechanisms, and in the later 1990s powerful combined molecular genetics, patch clamp, and plant physiological response analyses further manifested the importance of ion channels for many biological and stress responses of plants. Essential metals and ions in the intracellular and intraorganellar spaces of plant cells contribute to the activities of regulatory proteins, signal transduction, and to the maintenance of turgor pressure, osmoregulation, toxic metal chelation, and membrane potential control. A large number of studies on mineral nutrition have sustained the profitable cultivation of plant growth and development, and provided important knowledge on plant physiological mechanism of absorption of minerals from soils. Abiotic stress and biotic stresses are a global problem for plant growth in agricultural and noncultivated lands. Ion channels in plant cells play crucial functions in adapting to and overcoming abiotic and biotic stresses. Plant membrane transport systems play an important role not only in the uptake of nutrients from the soil but also in the adaptation to stress and environmental change.

A revolution has taken place in the understanding of cell physiological, biophysical, molecular, and interaction network properties of plant ion channels and transporters as summarized here. However, many exciting and stimulating questions remain open to discovery, promising that research on plant ion channels will continue to be a vibrant area of research for many years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427:803–807

    Article  CAS  PubMed  Google Scholar 

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999a) Arabidopsis abi1–1 and abi2–1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999b) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Visia faba. Nature 318:3

    Article  Google Scholar 

  • Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MR, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR (1988) Potassiium-dependent, bipolar gating of K+ channels in guard cells. J Membr Biol 102:235–246

    Article  Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR, Grabov A, Brearley J, Hammond-Kosack K, Jones JD (1999) K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. Plant J 19:453–462

    Article  CAS  PubMed  Google Scholar 

  • Bregante M, Yang Y, Formentin E, Carpaneto A, Schroeder JI, Gambale F, Lo Schiavo F, Costa A (2008) KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Mol Biol 66:61–72

    Article  CAS  PubMed  Google Scholar 

  • Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Bush DS, Hedrich R, Schroeder JI, Jones RL (1988) Channel-mediated K+ flux in barley aleurone protoplasts. Planta 176:368–377

    Article  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Ward JM, Kelly WB, Ichida AM, Gaber RF, Anderson JA, Uozumi N, Schroeder JI, Crawford NM (1995) Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol 109:1093–1106

    Article  CAS  PubMed  Google Scholar 

  • Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM (2009) Deregulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca-programmed stomatal closure. Plant J 58:437–449

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Lelievre F, Thomine S, Barbier-Brygoo H, Frachisse JM (2005) Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot 56:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Thomine S, Guern J, Frachisse JM, Barbier-Brygoo H (2001) Nucleotides provide a voltage-sensitive gate for the rapid anion channel of Arabidopsis hypocotyl cells. J Biol Chem 276:36139–36145

    Article  CAS  PubMed  Google Scholar 

  • Corratge C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066

    Article  CAS  PubMed  Google Scholar 

  • Curtis HJ, Cole KS (1938) Transverse electric impedance of the squid giant axon. J Gen Physiol 21:757–765

    Article  CAS  PubMed  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29:809–820

    Article  CAS  PubMed  Google Scholar 

  • Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J 16:2565–2575

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    Article  CAS  PubMed  Google Scholar 

  • Davies JM, Sanders D (1995) ATP, pH and Mg2+ modulate a cation current in Beta vulgaris vacuoles: a possible shunt conductance for the vacuolar H+-ATPase. J Membr Biol 145:75–86

    CAS  PubMed  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  CAS  Google Scholar 

  • de Boer AH (1999) Potassium translocation into the root xylem. Plant Biol 1:36–45

    Article  Google Scholar 

  • de Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: strucutre and functiong of the xylem. Plant Cell Environ 26:87–101

    Article  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed  Google Scholar 

  • Dreyer I, Antunes S, Hoshi T, Muller-Rober B, Palme K, Pongs O, Reintanz B, Hedrich R (1997) Plant K+ channel alpha-subunits assemble indiscriminately. Biophys J 72:2143–2150

    Article  CAS  PubMed  Google Scholar 

  • Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77:775–788

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Ninnemann O (1995) Heterologous expression of genes in bacterial, fungal, animal, and plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:419–444

    Article  CAS  Google Scholar 

  • Fu HH, Luan S (1998) AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    CAS  PubMed  Google Scholar 

  • Gambale F, Uozumi N (2006) Properties of shaker-type potassium channels in higher plants. J Membr Biol 210:1–19

    Article  CAS  PubMed  Google Scholar 

  • Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:869–852

    Article  CAS  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K+ channels in root hairs of wheat (a mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control). Plant Physiol 105:1399–1408

    CAS  PubMed  Google Scholar 

  • Gaymard F, Cerutti M, Horeau C, Lemaillet G, Urbach S, Ravallec M, Devauchelle G, Sentenac H, Thibaud JB (1996) The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Biol Chem 271:22863–22870

    Article  CAS  PubMed  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  CAS  PubMed  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-Brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267

    Article  CAS  PubMed  Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJ (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    Article  CAS  PubMed  Google Scholar 

  • Gong JM, Waner DA, Horie T, Li SL, Horie R, Abid KB, Schroeder JI (2004) Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:15404–15409

    Article  CAS  PubMed  Google Scholar 

  • Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95:4778–4783

    Article  CAS  PubMed  Google Scholar 

  • Grabov A, Leung J, Giraudat J, Blatt MR (1997) Alteration of anion channel kinetics in wild-type and abi1–1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J 12:203–213

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DW, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  CAS  PubMed  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196–200

    Article  CAS  PubMed  Google Scholar 

  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    CAS  PubMed  Google Scholar 

  • Hedrich R, Flügge UI, Fernandez JM (1986) Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett 22:228–232

    Article  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–837

    Article  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Horie R, Chan WY, Leung HY, Schroeder JI (2006) Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. Plant Cell Physiol 47:622–633

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hoshi T (1995) Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol 105:309–328

    Article  CAS  PubMed  Google Scholar 

  • Hoth S, Dreyer I, Dietrich P, Becker D, Muller-Rober B, Hedrich R (1997) Molecular basis of plant-specific acid activation of K+ uptake channels. Proc Natl Acad Sci USA 94:4806–4810

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805

    Article  CAS  PubMed  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker EP, Sato Y, Goshima S, Uozumi N (2001) Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA 98:6488–6493

    Article  CAS  PubMed  Google Scholar 

  • Keller BU, Hedrich R, Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells 450. Nature 341:450–453

    Article  Google Scholar 

  • Ketchum KA, Slayman CW (1996) Isolation of an ion channel gene from Arabidopsis thaliana using the H5 signature sequence from voltage-dependent K+ channels. FEBS Lett 378:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic Concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7:1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312

    CAS  PubMed  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  CAS  PubMed  Google Scholar 

  • Kourie J, Goldsmith MH (1992) K+ channels are responsible for an inwardly rectifying current in the plasma membrane of mesophyll protoplasts of Avena sativa. Plant Physiol 98:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Article  CAS  PubMed  Google Scholar 

  • Lacan D, Durand M (1996) Na+–K+ exchange at the xylem/symplast boundary (Its significance in the salt sensitivity of soybean). Plant Physiol 110:705–711

    CAS  PubMed  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA (1994) Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. J Membr Biol 137:99–107

    CAS  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    Article  CAS  PubMed  Google Scholar 

  • Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang G-X, Xin M, Yang H-M, Wu X-J, Li T (2004) The parameters of guard cell calcium oscillation encodes stomatal oscillation and closure in Vicia faba. Plant Science 166:415–421

    Article  CAS  Google Scholar 

  • Linder B, Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313:27–30

    Article  CAS  PubMed  Google Scholar 

  • Lurin C, Geelen D, Barbier-Brygoo H, Guern J, Maurel C (1996) Cloning and functional expression of a plant voltage-dependent chloride channel. Plant Cell 8:701–711

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002a) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  • Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002b) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA 99:6428–6433

    Article  PubMed  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Ichida AM, Sanders D, Schroeder JI (1997) Roles of higher plant K+ channels. Plant Physiol 114:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Marmagne A, Vinauger-Douard M, Monachello D, de Longevialle AF, Charon C, Allot M, Rappaport F, Wollman FA, Barbier-Brygoo H, Ephritikhine G (2007) Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J Exp Bot 58:3385–3393

    Article  CAS  PubMed  Google Scholar 

  • Marten I, Zeilinger C, Redhead C, Landry DW, al-Awqati Q, Hedrich R (1992) Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J 11:3569–3575

    CAS  PubMed  Google Scholar 

  • Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T, Bakker EP, Uozumi N (2004) Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J Biol Chem 279:54952–54962

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in ctomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    CAS  PubMed  Google Scholar 

  • Miedema H, Demidchik V, Very AA, Bothwell JH, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179:378–385

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Vogg G, Sanders D (1990) Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc Natl Acad Sci USA 87:9348–9352

    Article  CAS  PubMed  Google Scholar 

  • Miller C (2006) ClC chloride channels viewed through a transporter lens. Nature 440:484–489

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    Article  CAS  PubMed  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226:835–838

    Article  CAS  PubMed  Google Scholar 

  • Nakamura RL, Anderson JA, Gaber RF (1997) Determination of key structural requirements of a K+ channel pore. J Biol Chem 272:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yuda R, Unemoto T, Bakker EP (1998) KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus. J Bacteriol 180:3491–3494

    CAS  PubMed  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    Article  CAS  PubMed  Google Scholar 

  • Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Ward JM, Schroeder JI (1999) Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121:977–986

    Article  CAS  PubMed  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  CAS  PubMed  Google Scholar 

  • Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  CAS  PubMed  Google Scholar 

  • Pineros MA, Cancado GM, Kochian LV (2008) Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications. Plant Physiol 147:2131–2146

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    Article  CAS  PubMed  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  CAS  PubMed  Google Scholar 

  • Raschke K (2003) Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate. Planta 217:651–657

    Article  CAS  PubMed  Google Scholar 

  • Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217:639–650

    Article  CAS  PubMed  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MR, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94:6547–6552

    Article  CAS  PubMed  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    Article  CAS  PubMed  Google Scholar 

  • Schlosser A, Meldorf M, Stumpe S, Bakker EP, Epstein W (1995) TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J Bacteriol 177:1908–1910

    CAS  PubMed  Google Scholar 

  • Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability). Plant Physiol 106:383–391

    CAS  PubMed  Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92:667–683

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of VIsia faba guard cells. Nature 338:427–430

    Article  Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA 87:9305–9309

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Hedrich R (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci 14:187–192

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez M (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312:2–3

    Article  Google Scholar 

  • Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89:5025–5029

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proc Natl Acad Sci USA 84:4108–4112

    Article  CAS  PubMed  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki K, Iino M, Zeiger E (1986) Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319:324–326

    Article  CAS  Google Scholar 

  • Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Tazawa M (1968) Motive force of the cytoplasmic streaming in Nitella. Protoplasma 65:207–222

    Article  CAS  PubMed  Google Scholar 

  • Tazawa M (1972) Membrane characteristics as revealed by water and ionic relations of algal cells. Protoplasma 75:427–460

    Article  CAS  PubMed  Google Scholar 

  • Thiel G, MacRobbie EA, Blatt MR (1992) Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol 126:1–18

    CAS  PubMed  Google Scholar 

  • Tholema N, Vor der Bruggen M, Maser P, Nakamura T, Schroeder JI, Kobayashi H, Uozumi N, Bakker EP (2005) All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K+ uptake by the KtrAB system from Vibrio alginolyticus. J Biol Chem 280:41146–41154

    Article  CAS  PubMed  Google Scholar 

  • Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994a) Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J 13:5843–5847

    CAS  PubMed  Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R, Schroeder JI (1994b) Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J 13:2970–2975

    CAS  PubMed  Google Scholar 

  • Tyerman SD, Skerrett M, Garill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+ and Cl− into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

    CAS  Google Scholar 

  • Uozumi N (2001) Escherichia coli as an expression system for K+ transport systems from plants. Am J Physiol 281:733–739

    Google Scholar 

  • Uozumi N, Gassmann W, Cao Y, Schroeder JI (1995) Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J Biol Chem 270:24276–24281

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Nakamura T, Schroeder JI, Muto S (1998) Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc Natl Acad Sci USA 95:9773–9778

    Article  CAS  PubMed  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  CAS  PubMed  Google Scholar 

  • Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

    Article  CAS  PubMed  Google Scholar 

  • Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarie J, Long SR (2000) Genetic analysis of calcium spiking responses in nodulation mutants of medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analysis. Annu Rev Physiol 71:59–82

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Pei ZM, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-Induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH, De Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling. Plant Physiol 115:1707–1719

    CAS  PubMed  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol 105:799–813

    CAS  PubMed  Google Scholar 

  • Weinl S, Held K, Schlucking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675–686

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Meth 4:6

    Article  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis Cyclic Nucleotide-Gated Ion Channel11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763

    Article  CAS  PubMed  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506–7511

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W, Tyerman SD (2008) Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol 49:1316–1330

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Uozumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uozumi, N., Schroeder, J.I. (2010). Ion Channels and Plant Stress: Past, Present, and Future. In: Demidchik, V., Maathuis, F. (eds) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10494-7_1

Download citation

Publish with us

Policies and ethics