Skip to main content

Current Understanding Realities of Umbilical Cord Stem Cells Biology and Future Perspectives in Clinical Application

  • Chapter
  • First Online:
Perinatal Tissue-Derived Stem Cells

Abstract

In the recent years from variety of tissues, stem cells have been isolated but seem to be more concerning to mesenchymal stem cells (MSCs). Mesenchymal stem cells (MSCs) from bone marrow, adult organs, and fetuses show the disadvantages of ethical constraints, invasive isolation, and low cell numbers, and there are the clinical hurdles of potential immunorejection and tumorigenesis in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), respectively. To overcome these limitations, the potential of fetal stem cells derived from birth-associated tissues has been investigated. Mesenchymal stem cells have also been reported in some compartments of the umbilical cord (UC-MSCs) including umbilical blood vessel adventia and endothelium, amnion, subamnion, Wharton’s jelly, perivascular region. UC-MSCs are noncontroversial and ease of sourcing cells. These cells can be harvested painlessly in abundance and have higher rate of proliferation, possess stemness properties, differentiation abilities, immunosuppressive, and do not induce teratomas and have anticancer properties. These advantages make them ideal for their use in cell-based therapies and treatment of cancers. In this chapter, we will at first give an overview of the biology and phenotypic characteristics, then provide an outline of the recent findings related to UC-MSC therapeutic application for the treatment of malignant and nonmalignant hematopoietic and nonhematopoietic diseases.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-46410-7_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-46410-7_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aali E, Mirzamohammadi S, Ghaznavi H, Madjd Z, Larijani B, Rayegan S, Sharifi AM (2014) A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J Diabetes Metab Disord 13(1):76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8(2):215–225

    Article  CAS  PubMed  Google Scholar 

  • Appelbaum FR (2012) Pursuing the goal of a donor for everyone in need. N Engl J Med 367(16):1555

    Article  CAS  PubMed  Google Scholar 

  • Artene S-A, Ciurea ME, Purcaru SO, Tache DE, Tataranu LG, Lupu M, Dricu A (2013) Biobanking in a constantly developing medical world. Scientific World Journal 2013:343275

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagher Z, Ebrahimi-Barough S, Azami M, Mirzadeh H, Soleimani M, Ai J, Nourani MR, Joghataei MT (2015) Induction of human umbilical Wharton’s jelly-derived mesenchymal stem cells toward motor neuron-like cells. In Vitro Cell Dev Biol Anim 51(9):987–994. doi:10.1007/s11626-015-9921-z

    Article  CAS  PubMed  Google Scholar 

  • Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT (2016a) Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol 53(4):2397–2408. doi:10.1007/s12035-015-9199-x

    Article  CAS  PubMed  Google Scholar 

  • Bagher Z, Ebrahimi-Barough S, Azami M, Safa M, Joghataei MT (2016b) Cellular activity of Wharton’s Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. J Biomed Mater Res A 104(1):218–226. doi:10.1002/jbm.a.35555

    Article  PubMed  CAS  Google Scholar 

  • Bakhshi T, Zabriskie RC, Bodie S, Kidd S, Ramin S, Paganessi LA, Gregory SA, Fung HC, Christopherson KW 2nd (2008) Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 48(12):2638–2644

    Article  PubMed  PubMed Central  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Ballen K (2010) Challenges in umbilical cord blood stem cell banking for stem cell reviews and reports. Stem Cell Rev Rep 6:8–14

    Article  Google Scholar 

  • Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122(4):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry FP, Murphy JM, English K, Mahon BP (2005) Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 14:252–265

    Article  CAS  PubMed  Google Scholar 

  • Batsali AK, Kastrinaki M, Papadaki HA, Pontikoglou C (2013) Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: biological properties and emerging clinical applications. Curr Stem Cell Res Ther 8:144–155

    Article  CAS  PubMed  Google Scholar 

  • Bauder AR, Ferguson TA (2012) Reproducible mouse sciatic nerve crush and subsequent assessment of regeneration by whole mount muscle analysis. J Vis Exp (60). doi:10.3791/3606

  • Berezin AE (2014) Diabetes mellitus and cellular replacement therapy: expected clinical potential and perspectives. World J Diabetes 5(6):777

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongso A, Fong CY (2013) The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev 9:226–240

    Article  CAS  PubMed  Google Scholar 

  • Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117

    CAS  PubMed  Google Scholar 

  • Borhani-Haghighi M, Talaei-Khozani T, Ayatollahi M, Vojdani Z (2015) Wharton’s Jelly-derived mesenchymal stem cells can differentiate into hepatocyte-like cells by HepG2 cell line extract. Iran J Med Sci 40(2):143–151

    PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M (2014) Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 189(7):787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25:2886–2895

    Article  PubMed  Google Scholar 

  • Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    CAS  PubMed  Google Scholar 

  • Che N, Li X, Zhou S, Liu R, Shi D, Lu L, Sun L (2012) Umbilical cord mesenchymal stem cells suppress B-cell proliferation and differentiation. Cell Immunol 274:46–53

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L (2014) Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 9(6):e98565. doi:10.1371/journal.pone.0098565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y-X, Zeng Z-C, Sun J, Zeng H-Y, Zhang Z-Y (2015) Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56(4):700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y (2014) Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 12(1):1–8

    Article  CAS  Google Scholar 

  • Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH, Huang CA (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438

    Article  CAS  PubMed  Google Scholar 

  • Conconi MT, Di Liddo R, Tommasini M, Calore C, Parnigotto PP (2011) Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Open Tissue Eng Regen Med J 4:6–20

    Article  Google Scholar 

  • Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36(9):1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Dalous J, Larghero J, Baud O (2012) Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatr Res 71(4-2):482–490

    Article  CAS  PubMed  Google Scholar 

  • Ding DC, Chang YH, Shyu WC, Lin SZ (2015) Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant 24(3):339–347. doi:10.3727/096368915X686841

    Article  PubMed  Google Scholar 

  • Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, James J, Pillai RM (2012) Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 3(6):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M (2013) Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 51:265–273

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Barough S, Javidan AN, Saberi H, Joghataei MT, Rahbarghazi R, Mirzaei E, Faghihi F, Shirian S, Ai A, Ai J (2015) Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol 52(3):1704–1713

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Barough S, Hoveizi E, Norouzi JA, Jafar Ai J (2015) Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res A 103(8):2621–2627

    Article  CAS  PubMed  Google Scholar 

  • Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ (2003) Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 12(6):555–561

    Article  PubMed  Google Scholar 

  • Farias VA, Linares-Fernández JL, Peñalver JL, Payá Colmenero JA, Ferrón GO, Duran EL, Fernández RM, Olivares EG, O’Valle F, Puertas A, Oliver FJ, Ruiz de Almodóvar JM (2011) Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta 32(1):86–95

    Article  CAS  PubMed  Google Scholar 

  • Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82:160–167

    Article  PubMed  CAS  Google Scholar 

  • Fong CY, Richards M, Manasi N, Biswas A, Bongso A (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Rep Biomed Online 15(6):708–718

    Article  CAS  Google Scholar 

  • Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Fransson M, Piras E, Wang H, Burman J, Duprez I, Harris RA, LeBlanc K, Magnusson PU, Brittebo E, Loskog AS (2014) Intranasal delivery of central nervous system‐retargeted human mesenchymal stromal cells prolongs treatment efficacy of experimental autoimmune encephalomyelitis. Immunology 142(3):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  • Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13(12):1477–1486

    Article  PubMed  Google Scholar 

  • Fritsch MK, Singer DB (2008) Embryonic stem cell biology. Adv Pediatr 55:43–77

    Article  PubMed  Google Scholar 

  • Fuks A, Banjo C, Shuster J, Freedman SO, Gold P (1975) Carcinoembryonic antigen (CEA): molecular biology and clinical significance. Biochim Biophys Acta 417(2):123–152

    CAS  PubMed  Google Scholar 

  • Gärtner A, Pereira T, Armada-da-Silva P, Amado S, Veloso A, Amorim I, Ribeiro J, Santos J, Bárcia R, Cruz P (2014) Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries. J Stem Cells Regen Med 10(1):14

    PubMed  PubMed Central  Google Scholar 

  • Geranmayeh MH, Baghbanzadeh A, Barin A, Salar-Amoli J, Dehghan MM, Rahbarghazi R, Azari H (2015) Paracrine neuroprotective effects of neural stem cells on glutamate-induced cortical neuronal cell excitotoxicity. Adv Pharm Bull 5(4):515–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from a HLA matched sibling. N Engl J Med 321:1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Griparic L, Umana M, Burgee K, Vargas V, Nasrallah R, Silva F, Patel A (2010) An efficient approach to isolation and characterization of pre- and postnatal umbilical cord lining stem cells for clinical applications. Cell Transplant 19(11):1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Sanchez MB, Lopez-Valeiras E, Morente MM, Fernández Lago O (2013) Cost model for biobanks. Biopreserv Biobanking 11(5):272–277

    Article  Google Scholar 

  • Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Greider CW (1998) Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A 95(1):90–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, Chen L, Tong W, Zhang J, Han Q (2013) Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials 34(24):5937–5946

    Article  CAS  PubMed  Google Scholar 

  • Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha C-W, Park Y-B, Chung J-Y, Park Y-G (2015) Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med 4(9):1044–1051. doi:10.5966/sctm.2014-0264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad A, Majda KY, Mohamed AF, Kazem B, Ashraf AM (2015) Multi-lineage differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers. PLoS One 10(4):e0122465

    Article  CAS  Google Scholar 

  • Han I, Yun M, Kim E-O, Kim B, Jung M-H, Kim S-H (2014) Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Res Ther 5(2):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henningson CT Jr, Stanislaus MA, Gewirtz AM (2003) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 111(2):S745–S753

    Article  PubMed  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134(Pt 6):1790–1807. doi:10.1093/brain/awr063

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoogduijn MJ, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke MH (2010) The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 10(12):1496–1500

    Article  CAS  PubMed  Google Scholar 

  • Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE (2007) Charaterization and differentiation of equine umbilical cord derived matrix cells. Biochem Biophys Res Commun 362:347–353

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW (2010) Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 19:1895–1910

    Article  CAS  PubMed  Google Scholar 

  • Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90(2):261–269

    Article  PubMed  Google Scholar 

  • Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin‐producing islet‐like clusters from human embryonic stem cells. Stem Cells 25(8):1940–1953

    Article  CAS  PubMed  Google Scholar 

  • Jing W, Chen Y, Lu L, Hu X, Shao C, Zhang Y, Zhou X, Zhou Y, Wu L, Liu R, Fan K, Jin G (2014) Human umbilical cord blood-derived mesenchymal stem cells producing IL15 eradicate established pancreatic tumor in syngeneic mice. Mol Cancer Ther 13(8):2127–2137. doi:10.1158/1535-7163.mct-14-0175

    Article  CAS  PubMed  Google Scholar 

  • Jo CH, Kim OS, Park EY, Kim BJ, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Yoon KS (2008) Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res 334(3):423–433

    Article  PubMed  Google Scholar 

  • Kadam SS, Tiwari S, Bhonde RR (2009) Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev Biol Anim 45(1-2):23–27

    Article  PubMed  Google Scholar 

  • Kalaszczynska I, Ferdyn K (2015) Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int 2015:430847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang S, Borlongan CV (2013) Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimer’s Dement Transl Res Clin Interv 1(2):95–102

    Article  Google Scholar 

  • Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19(4):491–502

    Article  CAS  PubMed  Google Scholar 

  • Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM, Kim HT, Kim SH (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    Article  CAS  PubMed  Google Scholar 

  • La RG, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasà L, Cappello F, Zummo G, Farina F (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131(2):267–282

    Article  CAS  Google Scholar 

  • Le BK (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489

    Article  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet 363(9419):1439–1441

    Article  Google Scholar 

  • Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long‐term follow‐up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28(6):1099–1106

    Article  PubMed  Google Scholar 

  • Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W (2012) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-Y, Zheng Z-H, Li X-Y, Guo J, Zhang Y, Li H, Wang Y-W, Ren J, Wu Z-B (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19(27):4893–4899

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Yingfei G, Hongxia Z, Yaxin Y, Jinjin Z, Haiwei C, Lei W, Na L, Runmei L, Yunfeng X (2014) Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction. PLoS One 9(11):111850

    Article  CAS  Google Scholar 

  • Lim SY, Kim YS, Ahn Y, Jeong MH, Hong MH, Joo SY, Nam KI, Cho JG, Kang PM, Park JC (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 70(3):530–542. doi:10.1016/j.cardiores.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-C, Ko T-L, Shih Y-H, Lin M-YA, Fu T-W, Hsiao H-S, Hsu J-YC, Fu Y-S (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42(7):2045–2053

    Article  PubMed  Google Scholar 

  • Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H (2013) Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 15(2):185–191

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Zhao H, Xu J, Zhang Z, Zhang X (2013) Human umbilical cord mesenchymal stem cells in the treatment of secondary progressive multiple sclerosis. J Stem Cell Res Ther 6:2

    CAS  Google Scholar 

  • Ma F, Chen D, Chen F, Chi Y, Han Z, Feng X, Li X (2015) Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8 and interleukin-6 dependent induction of CD44 (+)/CD24 (-) cells. Cell Transplant 24(12):2585–2599

    Article  PubMed  Google Scholar 

  • Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE, Koc ON (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 33(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Majore I, Moretti P, Stahl F, Hass R, Kasper C (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev 7(1):17–31

    Article  PubMed  Google Scholar 

  • Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12(3):730–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008a) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM (2008b) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29(15):1807–1818

    Article  CAS  PubMed  Google Scholar 

  • Mehrabi M, Mansouri K, Hosseinkhani S, Yarani R, Yari K, Bakhtiari M, Mostafaie A (2015) Differentiation of human skin-derived precursor cells into functional islet-like insulin-producing cell clusters. In Vitro Cell Dev Biol Anim 51:1–9

    Article  CAS  Google Scholar 

  • Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN, Mortazavi‐Tabatabaei SAR, Massumi M, Barough SE (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19(1):7–14

    Article  Google Scholar 

  • Mohammadi E, Nassiri SM, Rahbarghazi R, Siavashi V, Araghi A (2015) Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells. Cell Tissue Res 362:1–13

    Article  CAS  Google Scholar 

  • Murry CE, Field LJ, Menasché P (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112(20):3174–3183. doi:10.1161/circulationaha.105.546218

    Article  PubMed  Google Scholar 

  • Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010a) Longterm expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19:117–130

    Article  CAS  PubMed  Google Scholar 

  • Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M (2010b) Optimization and scale-up of Wharton’s jelly derived mesenchymal stem cells for clinical applications. Stem Cell Res 5(3):244–254

    Article  CAS  PubMed  Google Scholar 

  • Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7(2):258–262

    Article  CAS  PubMed  Google Scholar 

  • Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, Ebrahimi-Barough S, Karimi R, Roozafzoon R, Ai J (2014) A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int 38(10):1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nagata N, Yamanaka S (2011) Immunogenicity of induced pluripotent stem cells. Circ Res 109(7):720–721. doi:10.1161/RES.0b013e318232e187

    Article  CAS  PubMed  Google Scholar 

  • Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22(7):1263–1278

    Article  CAS  PubMed  Google Scholar 

  • Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    Article  PubMed  Google Scholar 

  • Perdikogianni C, Dimitriou H, Stiakaki E, Martimianaki G, Kalmanti M (2008) Could cord blood be a source of mesenchymal stromal cells for clinical use? Cytotherapy 10(5):452–459

    Article  CAS  PubMed  Google Scholar 

  • Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR (2009) Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud 6(4):260–270

    Article  PubMed  Google Scholar 

  • Phinney DG, Isakova I (2005) Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11(10):1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AAF, van der Laarse A, Ypey DL, Atsma DE (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103(2):167–176. doi:10.1161/circresaha.108.176131

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pountos I, Giannoudis PV, Jones E, English A, Churchman S, Field S, Ponchel F, Bird H, Emery P, McGonagle D (2011) NSAIDS inhibit in vitro MSC chondrogenesis but not osteogenesis: implications for mechanism of bone formation inhibition in man. J Cell Mol Med 15(3):525–534

    Article  CAS  PubMed  Google Scholar 

  • Prasanna SJ, Jahnavi VS (2011) Wharton’s jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Eng Regen Med J 4:28–38

    Article  CAS  Google Scholar 

  • Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D (2007) Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther 14(10):828–835

    Article  CAS  PubMed  Google Scholar 

  • Rahbarghazi R, Nassiri SM, Khazraiinia P, Kajbafzadeh A-M, Ahmadi SH, Mohammadi E, Molazem M, Zamani-Ahmadmahmudi M (2012) Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev 22(6):855–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A, Hosseinkhani H (2014) Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 173(3):453–466

    Article  PubMed  Google Scholar 

  • Rahman MJ, Regn D, Bashratyan R, Dai YD (2014) Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 63(3):1008–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratanatharathorn V, Ayash L, Lazarus H, Fu J, Uberti J (2001) Chronic graft-versus-host disease: clinical manifestation and therapy. Bone Marrow Transplant 28(2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC (2014) Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther 5(3):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reza HM, Ng BY, Phan TT, Tan DT, Beuerman RW, Ang LP (2011) Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev 7(3):624–638

    Article  CAS  PubMed  Google Scholar 

  • Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall H-U, Dlugosz A, Szakos A, Hassan Z (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    Article  PubMed  Google Scholar 

  • Riteau B, Moreau P, Menier C, Khalil-Daher I, Khosrotehrani K, Bras-Goncalves R, Paul P, Dausset J, Rouas-Freiss N, Carosella ED (2001) Characterization of HLA-G1, -G2, -G3, and -G4 isoforms transfected in a human melanoma cell line. Transplant Proc 33:2360–2364

    Article  CAS  PubMed  Google Scholar 

  • Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314(9):1937–1944

    Article  CAS  PubMed  Google Scholar 

  • Rosa T, BacklyRania E (2015) Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev 24(13):1570–1581

    Article  CAS  Google Scholar 

  • Roura S, Bagó JR, Soler-Botija C, Pujal JM, Gálvez-Montón C, Prat-Vidal C, Llucià-Valldeperas A, Blanco J, Bayes-Genis A (2012) Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo. PLoS One 7(11):e49447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, Samani FS, Torshizi Z, Nematollahi-Mahani SN (2012) Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 48(2):75–83

    Article  PubMed  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229

    Article  PubMed  Google Scholar 

  • Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4(8):e6498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarvandi SS, Joghataei MT, Parivar K, Khosravi M, Sarveazad A, Sanadgol N (2015) In vitro differentiation of rat mesenchymal stem cells to hepatocyte lineage. Iran J Basic Med Sci 18(1):89

    PubMed  PubMed Central  Google Scholar 

  • Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, Okamoto OK, Verjovski-Almeida S, Zatz M (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5(4):387–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshareddy K, Troyer D, Weiss ML (2008) Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord. Methods Cell Biol 86:101–119

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AJ, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238

    Article  CAS  PubMed  Google Scholar 

  • Shawki S, Gaafar T, Erfan H, Khateeb EE, Sheikhah AE, Hawary RE (2015) Immunomodulatory effect of umbilical cord derived mesenchymal stem cells. Microbiol Immunol 59(6):348–356

    Article  CAS  PubMed  Google Scholar 

  • Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, Shen J, Cheng Y, Fu X, Han W (2012) Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes 61(6):1616–1625. doi:10.2337/db11-1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefano F, Serena V, Lucia VF, Miriana JQ, Giampiero L, Alberto T, Erica V (2015) Wharton’s jelly derived mesenchymal stromal cells: biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 117(4-5):329–338

    Article  CAS  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Fong CY, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62(8):2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Sung M-A, Jung HJ, Lee J-W, Lee J-Y, Pang K-M, Yoo SB, Alrashdan MS, Kim S-M, Jahng JW, Lee J-H (2012) Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves. Neural Regen Res 7(26):2018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taghizadeh RR, Cetrulo KJ, Cetrulo CL (2011) Wharton’s jelly stem cells: future clinical applications. Placenta 32(4):311–315

    Article  CAS  Google Scholar 

  • Tehrani HJ, Parivar K, Ai J, Kajbafzadeh A, Rahbarghazi R, Hashemi M, Sadeghizadeh M (2014) Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iran J Pharm Res 13(2):659

    CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28(8):1446–1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98. doi:10.1161/hc0102.101442

    Article  PubMed  Google Scholar 

  • Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, Ramasamy R (2011) Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 35(3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Troyer DL, Weiss ML (2008) Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599

    Article  PubMed  Google Scholar 

  • Tsagias N, Koliakos I, Karagiannis V, Eleftheriadou M, Koliakos GG (2011) Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med 21(4):253–261

    Article  CAS  PubMed  Google Scholar 

  • Tsai PC, Fu TW, Chen YMA, Ko TL, Chen TH, Shih YH, Hung SC, Fu YS (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 15(5):484–495

    Article  PubMed  Google Scholar 

  • Vogelaar CF, Vrinten DH, Hoekman MF, Brakkee JH, Burbach JPH, Hamers FP (2004) Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res 1027(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  • Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J (2009) The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126(2):220–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A, Zhang J, Yang Y, Wang S, Cui J, Liang L, Ji Y, Han ZB, Fang X, Han ZC (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950. doi:10.1038/cddis.2013.480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2(2):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24(3):781–792

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Anderson C, Medicetty S, SeshareddyK B, Weiss RJ, Vanderwerff I, Troyer D, Mcintosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  • Welte K, Foeken L, Gluckman E, Navarrete C, Cord Blood Working Group of the World Marrow Donor Association (2010) International exchange of cord blood units: the registry aspects. Bone Marrow Transplant 45:825–831

    Article  CAS  PubMed  Google Scholar 

  • Wetzig A, Alaiya A, Al-Alwan M, Pradez CB, Pulicat MS, Al-Mazrou A, Shinwari Z, Sleiman GM, Ghebeh H, Al-Humaidan H, Gaafar A, Kanaan I, Adra C (2013) Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  PubMed  Google Scholar 

  • Wu X-B, Tao R (2012) Hepatocyte differentiation of mesenchymal stem cells. Hepatobiliary Pancreat Dis Int 11(4):360–371

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Sheng L, Ouyang G (2014) [Umbilical cord blood-derived mesenchymal stem cells inhibit proliferation of peripheral blood lymphocytes]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 30(9):968–971

    CAS  PubMed  Google Scholar 

  • Yamashita A, Liu S, Woltjen K, Thomas B, Meng G, Hotta A, Takahashi K, Ellis J, Yamanaka S, Rancourt DE (2013) Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Sci Rep 3:1978

    PubMed  PubMed Central  Google Scholar 

  • Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, Zhou H, Mao F (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29(3):356–365

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Yashiro M, Sawada T, Ohira M, Hirakawa K (2007) ERas oncogene expression and epigenetic regulation by histone acetylation in human cancer cells. Anticancer Res 27(6B):4071–4075

    CAS  PubMed  Google Scholar 

  • Yoon JH, Roh EY, Shin S, Jung NH, Song EY, Chang JY, Kim BJ, Jeon HW (2013) Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. Biomed Res Int 2013:428726

    PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Chen D, Chen X, Shao H, Huang S (2014) Human umbilical cord-derived mesenchymal stem cells inhibit proliferation but maintain survival of Jurkat leukemia cells in vitro by activating Notch signaling. Nan Fang Yi Ke Da Xue Xue Bao 34(4):441–447

    CAS  PubMed  Google Scholar 

  • Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, Lv S, Li Y, Yu S (2012) Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 27(s2):112–120

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xiang J, Li G (2013) The uncertain role of unmodified mesenchymal stem cells in tumor progression: what master switch? Stem Cell Res Ther 4(2):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  CAS  PubMed  Google Scholar 

  • Zhi-Gang Z, Wei-Ming L, Zhi-Chao C, Yong Y, Ping Z (2008) Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases. Leuk Lymphoma 49(11):2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Yang B, Tian Y (2011) Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol 272(1):33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Li Z, He C, Li R, Xia H, Li C, Xiao J, Chen Z-Y (2014) Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model. PLoS One 9(8):e104392. doi:10.1371/journal.pone.0104392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou Z-l, Liu Y, Mao X-H, Wei C-y, Meng M-y, Liu Y-h, Zhuyun Yang Z, Zhu H, Short M, Bernard C, Xiao Z-c (2013) Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr 7(5):404–407. doi:10.4161/cam.26941

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Ebrahimi-Barough Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ebrahimi-Barough, S., Rahbarghazi, R., Bagher, Z., Ai, J., Hoveizi, E. (2016). Current Understanding Realities of Umbilical Cord Stem Cells Biology and Future Perspectives in Clinical Application. In: Arjmand, B. (eds) Perinatal Tissue-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46410-7_6

Download citation

Publish with us

Policies and ethics