Skip to main content

Advertisement

Log in

Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human endometrium is a high-dynamic tissue that contains human endometrial stem cells (hEnSCs) which can be differentiated into a number of cell lineages. The differentiation of hEnSCs into many cell lineages such as osteoblast, adipocyte, and neural cells has been investigated previously. However, the differentiation of these stem cells into motor neuron-like cells has not been investigated yet. Different biochemical and topographical cues can affect the differentiation of stem cells into a specific cell. The aim of this study was to investigate the capability of hEnSCs to be differentiated into motor neuron-like cells under biochemical and topographical cues. The biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibrous scaffold was used as a topographical cue. Human EnSCs were cultured on the PLGA scaffold and tissue culture polystyrene (TCP), then differentiation of hEnSCs into motor neuron-like cells under induction media including retinoic acid (RA) and sonic hedgehog (Shh) were evaluated for 15 days. The proliferation rate of cells was assayed by using MTT assay. The morphology of cells was studied by scanning electron microscopy imaging, and the expression of motor neuron-specific markers by real-time PCR and immunocytochemistry. Results showed that survival and differentiation of hEnSCs into motor neuron-like cells on the PLGA scaffold were better than those on the TCP group. Taken together, the results suggest that differentiated hEnSCs on PLGA can provide a suitable, three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system, and these cells may be a potential candidate in cellular therapy for motor neuron diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770

    Article  CAS  PubMed  Google Scholar 

  2. Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neurosci Bull 29(4):421–435

    Article  PubMed  Google Scholar 

  3. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10(3):235–241

    Article  CAS  PubMed  Google Scholar 

  4. Ronsyn MW, Berneman ZN, Van Tendeloo VFI, Jorens PG, Ponsaerts P (2008) Can cell therapy heal a spinal cord injury? Spinal Cord 46(8):532–539

    Article  CAS  PubMed  Google Scholar 

  5. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU (2007) Stem cell-based cell therapy for spinal cord injury. Cell Transplant 16(4):355–364

    Article  PubMed  Google Scholar 

  6. Mothe AJ, Tator CH (2013) Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci 31(7):701–713

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, Okano H (2004) Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury. Dev Neurosci 26(2–4):275–287

    CAS  PubMed  Google Scholar 

  8. Yazdani SO, Pedram M, Hafizi M, Kabiri M, Soleimani M, Dehghan MM, Jahanzad I, Gheisari Y, Hashemi SM (2012) A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell 44(4):205–213

    Article  CAS  PubMed  Google Scholar 

  9. Kang CE, Poon PC, Tator CH, Shoichet MS (2009) A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng Part A 15(3):595–604

    Article  CAS  PubMed  Google Scholar 

  10. Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz LI (2006) An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol 201(2):359–367

    Article  CAS  PubMed  Google Scholar 

  11. Ghoroghi MF, Beygom Hejazian L, Esmaielzade B, Dodel M, Roudbari M, Nobakht M (2013) Evaluation of the effect of NT-3 and biodegradable poly-L-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro. J Mol Neurosci 51(3):318–327

    Article  CAS  Google Scholar 

  12. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    Article  CAS  PubMed  Google Scholar 

  13. Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–1096

    Article  CAS  PubMed  Google Scholar 

  14. Ai J, Kiasat-Dolatabadi A, Ebrahimi-Barough S, Ai A, Lotfibakhshaiesh N, Norouzi-Javidan A, Saberi H, Arjmand B, Aghayan HR (2013) Polymeric scaffolds in neural tissue engineering: a review. Arch Neurosci 1(1):15–20

    Article  Google Scholar 

  15. Hsu SH, Chang CJ, Tang CM, Lin FT (2004) In vitro and in vivo effects of Ginkgo biloba extract EGb 761 on seeded Schwann cells within poly(DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. J Biomater Appl 19(2):163–182

    Article  CAS  PubMed  Google Scholar 

  16. Hou SY, Zhang Y, Quan DP, Liu XL, Zhu JK (2006) Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. Neuroscience 140(1):101–110

    Article  CAS  PubMed  Google Scholar 

  17. Wen X, Tresco PA (2006) Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27(20):3800–3809

    Article  CAS  PubMed  Google Scholar 

  18. Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13(10):1387–1400

    Article  CAS  PubMed  Google Scholar 

  19. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80(6):1136–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. J Cell Mol Med 15(4):747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavakol S, Aligholi H, Gorji A, Eshaghabadi A, Hoveizi E, Tavakol B, Rezayat SM, Ai J (2014) Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: in vitro and in vivo studies in rat. J Biomed Mater Res A. doi:10.1002/jbm.a.35117

    Google Scholar 

  22. Navaei-Nigjeh M, Amoabedini G, Noroozi A, Azami M, Asmani MN, Ebrahimi-Barough S, Saberi H, Ai A, Ai J (2014) Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. J Biomed Mater Res A 102(8):2533–2543

    Article  PubMed  Google Scholar 

  23. Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SM, Ghanbari Z, Javidan AN, Mortazavi- Tabatabaei SA, Massumi M, Barough SE (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Boil Inter Rep 19(1):7–14

    Article  Google Scholar 

  24. Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M (2013) Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 51(2):265–273

    Article  CAS  PubMed  Google Scholar 

  25. Ebrahimi-Barough S, Kouchesfehani HM, Ai J, Mahmoodinia M, Tavakol S, Massumi M (2013) Programming of human endometrial-derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neurosci Lett 537:65–70

    Article  CAS  PubMed  Google Scholar 

  26. Ebrahimi-Barough S, Massumi M, Kouchesfahani HM, Ai J (2013) Derivation of pre-oligodendrocytes from human endometrial stromal cells by using overexpression of microRNA 338. J Mol Neurosci 51(2):337–343

    Article  CAS  PubMed  Google Scholar 

  27. Asmani MN, Ai J, Amoabediny G, Noroozi A, Azami M, Ebrahimi-Barough S, Navaei-Nigjeh M, Ai A, Jafarabadi M (2013) Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Boil Int 37(12):1340–1349

    Article  CAS  Google Scholar 

  28. Ai J, Shahverdi AR, Barough SE, Kouchesfehani HM, Heidari S, Roozafzoon R, Verdi J, Khoshzaban A (2012) Derivation of adipocytes from human endometrial stem cells (EnSCs). J Reprod Infertile 13(3):151–157

    CAS  Google Scholar 

  29. Azami M, Ai J, Ebrahimi-Barough S, Farokhi M, Fard SE (2013) In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue Cell 45(5):328–337

    Article  CAS  PubMed  Google Scholar 

  30. Ai J, Azizi E, Shamsian A, Eslami A, Khoshzaban A, Ebrahimi-Barough S, Ai A, Alizadeh A (2014) BMP-2 can promote the osteogenic differentiation of human endometrial stem cells. ABM 8:21–29

    CAS  Google Scholar 

  31. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, Ebrahimi-Barough S, Karimi R, Roozafzoon R, Ai J (2014) A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int 6: doi: 10.1002/cbin.10314

  32. Liqing Y, Jia G, Jiqing C, Ran G, Fei C, Jie K, Yanyun W, Cheng Z (2011) Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport 22(8):370–373

    Article  PubMed  Google Scholar 

  33. Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70(6):1738–1750

    Article  CAS  PubMed  Google Scholar 

  34. Gargett CE, Nguyen HP, Ye L (2012) Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord 13(4):235–251

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Jin P, Sabatino M, Ren J, Civini S, Bogin V, Ichim TE, Stroncek DF (2012) Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 10(1):207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ouyang Y, Huang C, Zhu Y, Fan C, Ke Q (2013) Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J Biomed Nanotechnol 9(6):931–943

    Article  CAS  PubMed  Google Scholar 

  37. Huimin Y, Lei Z, Yunfang W, Feng L, Lidong G, Shaoqing L, Fang Y, Xue N, Cixian B, Feng L, Yongnian Y, Xuetao P (2006) Proliferation and differentiation into endothelial cells of human bone marrow mesenchymal stem cells (MSCs) on poly DL-lactic-co-glycolic acid (PLGA) films. Sci Bull 51(1):1328–1333

    Google Scholar 

  38. Park HW, Cho JS, Park CK, Jung SJ, Park CH, Lee SJ, Oh S, Park YS, Chang MS (2012) Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS ONE 7(4):35–44

    Article  Google Scholar 

  39. Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC (2008) Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26(4):886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87(4):661–673

    Article  CAS  PubMed  Google Scholar 

  41. Ericson J, Rashbass P, Sched A, Brenner-Morton S, Kawakami A, Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90(4):169–180

    Article  CAS  PubMed  Google Scholar 

  42. Hendrickson ML, Rao AJ, Demerdash ON, Kalil RE (2011) Expression of nestin by neural cells in the adult rat and human brain. PLoS ONE 6:1–15

    Article  Google Scholar 

  43. Gillette BM, Rossen NS, Das N, Leong D, Wang M, Dugar A, Sia SK (2011) Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 32(32):8067–8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Tao R, Wu W, Cao H, Xin J, Li J, Guo J, Jiang L, Gao C, Demetriou AA, Farkas DL, Li L (2010) 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev 19(32):1427–1436

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F, Qu J, Zuo B, Zhang H (2012) The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 100(9):632–645

    Article  PubMed  Google Scholar 

  46. Binan L, Tendey C, De G, Crescenzo R, Ayoubi E, Ajji A, Jolicoeur M (2014) Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35(2):664–6674

    Article  CAS  PubMed  Google Scholar 

  47. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14(11):1787–1797

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Iran National Science Foundation (INSF) for the financial support (grant number 92004774) and Tehran University of Medical Sciences for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi-Barough, S., Norouzi Javidan, A., Saberi, H. et al. Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds. Mol Neurobiol 52, 1704–1713 (2015). https://doi.org/10.1007/s12035-014-8931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8931-2

Keywords

Navigation