Skip to main content
Log in

Growth and Differentiation Properties of Mesenchymal Stromal Cell Populations Derived from Whole Human Umbilical Cord

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Up to 2.8 × 107 fibroblast-like cells displaying an abundant presence of mesenchymal stem cell (MSC) markers CD73, CD90, CD105 and a low level of HLA-I expression can be isolated from one whole human umbilical cord (UC) using a simple and highly reproducible explant culture approach. Cells derived from whole UC, similar to cells collected from separate compartments of UC, display a distinct chondrogenic and adipogenic potential. Therefore they are potential candidates for cartilage and adipose tissue engineering. Cell differentiation along the osteogenic pathway is, however, less efficient, even after the addition of 1.25-dihydroxyvitamin D3, a potent osteoinductive substance. Isolated cells are highly proliferative, tolerate cryopreservation with an average survival rate of about 75% and after thawing can be propagated further, at least over 20 population doublings before their proliferative activity begins to decline. More importantly, they synthesize numerous trophic factors including neurotrophins and factors which facilitate angiogenesis and hematopoiesis. In conclusion, cells isolated from whole UC satisfies all requirements essential for the generation of stem cell banks containing permanently available cell material for applications in the field of regenerative medicine. Nevertheless, further studies are needed to improve and adjust the methods which are already employed for adult MSC expansion and differentiation to specific properties and requirements of the primitive stem cells collected from UC. So, our data verify that the choice of individual parameters for cell propagation, such as duration of cell expansion and cell seeding density, has a substantial impact on the quality of UC-derived cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology & Experimental Morphology, 16(3), 381–390.

    CAS  Google Scholar 

  2. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  3. Dennis, J. E., Merriam, A., Awadallah, A., Yoo, J. U., Johnstone, B., & Caplan, A. I. (1999). A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. Journal of Bone and Mineral Research, 14, 700–709.

    Article  CAS  PubMed  Google Scholar 

  4. Choong, P. F., Mok, P. L., Cheong, S. K., Leong, C. F., & Then, K. Y. (2007). Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy, 9(2), 170–183.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, R., Jiang, X., Guo, Z., et al. (2008). Functional analysis of neuron-like cells differentiated from neural stem cells derived from bone marrow stroma cells in vitro. Cellular and Molecular Neurobiology, 28(4), 545–558.

    Article  PubMed  Google Scholar 

  6. Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal (Engl), 120(9), 771–776.

    CAS  Google Scholar 

  7. Saulnier, N., Lattanzi, W., Puglisi, M. A., et al. (2009). Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. European Review for Medical and Pharmacological Sciences, 13(1), 71–78.

    PubMed  Google Scholar 

  8. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  9. Kode, J. A., Mukherjee, S., Joglekar, M. V., & Hardikar, A. A. (2009). Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy, 11(4), 377–391.

    Article  CAS  PubMed  Google Scholar 

  10. Siegel, G., Schäfer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87(9), 45–49.

    Article  Google Scholar 

  11. Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.

    Article  CAS  Google Scholar 

  12. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  13. Hui, J. H., Ouyang, H. W., Hutmacher, D. W., Goh, J. C., & Lee, E. H. (2005). Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Annals of the Academy of Medicine, Singapore, 34(2), 206–212.

    CAS  PubMed  Google Scholar 

  14. Kraus, K. H., & Kirker-Head, C. (2006). Mesenchymal stem cells and bone regeneration. Veterinary Surgery, 35(3), 232–242.

    Article  PubMed  Google Scholar 

  15. Mobasheri, A., Csaki, C., Clutterbuck, A. L., Rahmanzadeh, M., & Shakibaei, M. (2009). Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histology and Histopathology, 24(3), 347–366.

    CAS  PubMed  Google Scholar 

  16. Syková, E., Jendelová, P., Urdzíková, L., Lesný, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cellular and Molecular Neurobiology, 26(7-8), 1113–1129.

    Article  PubMed  Google Scholar 

  17. Perin E. (2004). Transendocardial injection of autologous mononuclear bone marrow cells in end-stage ischemic heart failure patients: one-year follow-up. International Journal of Cardiology, 95(Suppl 1), S45–S46.

    Google Scholar 

  18. Stamm, C., Kleine, H. D., Westphal, B., et al. (2004). CABG and bone marrow stem cell transplantation after myocardial infarction. Thoracic and Cardiovascular Surgeon, 52(3), 152–158.

    Article  CAS  PubMed  Google Scholar 

  19. Lazarus, H. M., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398.

    Article  PubMed  Google Scholar 

  20. Fouillard, L., Chapel, A., Bories, D., et al. (2007). Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia, 21(3), 568–570.

    Article  CAS  PubMed  Google Scholar 

  21. Horwitz, E. M., Prockop, D. J., Gordon, P. L., et al. (2001). Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 97(5), 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  22. Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.

    Article  PubMed  Google Scholar 

  23. Ringdén, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.

    Article  PubMed  Google Scholar 

  24. Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., & Gerson, S. L. (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 9(6), 841–848.

    Article  CAS  Google Scholar 

  25. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  26. Lda Meirelles, S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5-6), 419–427.

    Article  CAS  Google Scholar 

  27. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  PubMed  Google Scholar 

  28. Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. The Journal of Pathology, 217(2), 318–324.

    Article  CAS  PubMed  Google Scholar 

  29. Kuo, C. K., Li, W. J., Mauck, R. L., & Tuan, R. S. (2006). Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 18(1), 64–73.

    Article  PubMed  Google Scholar 

  30. da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.

    Article  PubMed  Google Scholar 

  31. Marcus, A. J., & Woodbury, D. (2008). Fetal stem cells from extra-embryonic tissues: do not discard. Journal of Cellular and Molecular Medicine, 12(3), 730–742.

    Article  CAS  PubMed  Google Scholar 

  32. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25, 1384–1392.

    Article  CAS  PubMed  Google Scholar 

  33. Can, A., & Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25(11), 2886–2895.

    Article  PubMed  Google Scholar 

  34. Weiss, M. L., & Troyer, D. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.

    Article  PubMed  Google Scholar 

  35. Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., Jeschke, M. G. (2009). Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev, Jul 27, [Epub ahead of print].

  36. Covas, D. T., Siufi, J. L., Silva, A. R., & Orellana, M. D. (2003). Isolation and culture of umbilical vein mesenchymal stem cells. Brazilian Journal of Medical and Biological Research, 36, 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  37. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  38. Weiss, M. L., Medicetty, S., & Bledsoe, A. R. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells, 24(3), 781–792.

    Article  CAS  PubMed  Google Scholar 

  39. La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.

    Article  PubMed  Google Scholar 

  40. Brockhoff, G. (2007). Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie. In U. Sack, A. Tárnok, & G. Rothe (Eds.), Zelluläre Diagnostik (Vol. 1, pp. 604–646). Basel: Karger.

    Google Scholar 

  41. Majore, I., Moretti, P., Hass, R., Kasper, C. (2009). Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal. http://www.biosignaling.com/content/7/1/6. Accessed 20 March 2009.

  42. Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245–4248.

    Article  CAS  PubMed  Google Scholar 

  43. Tsutsumi, S., Shimazu, A., Miyazaki, K., et al. (2001). Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochemical and Biophysical Research Communications, 288(2), 413–419.

    Article  CAS  PubMed  Google Scholar 

  44. Bianchi, G., Banfi, A., Mastrogiacomo, M., et al. (2003). Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 287(1), 98–105.

    Article  CAS  PubMed  Google Scholar 

  45. Thomson, J. A., Itskovitz-Eldor, J., Sander, S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  46. Gronthos, S., Fitter, S., Diamond, P., et al. (2007). A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells and Development, 16(6), 953–963.

    Article  CAS  PubMed  Google Scholar 

  47. Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., et al. (2008). Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 32, 8–15.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., et al. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27, 126–137.

    Article  PubMed  Google Scholar 

  49. Raval, A., Puri, N., Rath, P. C., & Saxena, R. K. (1998). Cytokine regulation of expression of class I MHC antigens. Experimental & Molecular Medicine, 30(1), 1–13.

    CAS  Google Scholar 

  50. Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., et al. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.

    Article  PubMed  Google Scholar 

  51. Jo, C. H., Kim, O. S., Park, E. Y., Kim, B. J., Lee, J. H., Kang, S. B., et al. (2008). Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell and Tissue Research, 334, 423–433.

    Article  PubMed  Google Scholar 

  52. Sarugaser, R., Ennis, J., Stanford, W. L., & Davies, J. E. (2009). Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods in Molecular Biology, 482, 269–279.

    Article  CAS  PubMed  Google Scholar 

  53. Chung, C., & Burdick, J. A. (2009). Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Engineering. Part A, 15(2), 243–254.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, S. C., Chang, J. K., Wang, C. K., Wang, G. J., & Ho, M. L. (2010). Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials, 31(4), 631–640.

    Article  PubMed  Google Scholar 

  55. Diao, Y., Ma, Q., Cui, F., & Zhong, Y. (2008). Human umbilical cord mesenchymal stem cells: Osteogenesis in vivo as seed cells for bone tissue engineering. Journal of Biomedical Materials Research. Part A, 91(1), 123–131.

    Google Scholar 

  56. Hou, T., Xu, J., Wu, X., et al. (2009). Umbilical cord Wharton's Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Engineering. Part A, 15(9), 2325–2334.

    Article  CAS  PubMed  Google Scholar 

  57. Suzdal'tseva, Y. G., Burunova, V. V., Vakhrushev, I. V., Yarygin, V. N., & Yarygin, K. N. (2007). Capability of human mesenchymal cells isolated from different sources to differentiation into tissues of mesodermal origin. Bulletin of Experimental Biology and Medicine, 143, 114–121.

    Article  PubMed  Google Scholar 

  58. Girdlestone, J., Limbani, V. A., Cutler, A. J., & Navarrete, C. V. (2009). Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions. Cytotherapy, 11(6), 738–748.

    Article  CAS  PubMed  Google Scholar 

  59. Ishige, I., Nagamura-Inoue, T., Honda, M. J., et al. (2009). Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton's jelly explants of human umbilical cord. International Journal of Hematology, 90(2), 261–269.

    Article  PubMed  Google Scholar 

  60. Horwitz, E. M., Le Blanc, K., Dominaci, M., et al. (2005). Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy, 7(5), 393–395.

    Article  CAS  PubMed  Google Scholar 

  61. Suva, D., Garavaglia, G., Menetrey, J., et al. (2004). Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. Journal of Cellular Physiology, 198(1), 110–118.

    Article  CAS  PubMed  Google Scholar 

  62. Rubio, D., Garcia-Castro, J., Martín, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.

    CAS  PubMed  Google Scholar 

  63. Battiwalla, M., & Hematti, P. (2009). Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy, 11(5), 503–515.

    Article  PubMed  Google Scholar 

  64. Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7841–7845.

    Article  CAS  PubMed  Google Scholar 

  65. Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 24(2), 462–471.

    Article  PubMed  Google Scholar 

  66. Małkowski, A., Sobolewski, K., Jaworski, S., & Bańkowski, E. (2008). TGF-beta binding in human Wharton's jelly. Molecular and Cellular Biochemistry, 311(1-2), 137–143.

    Article  PubMed  Google Scholar 

  67. Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.

    CAS  PubMed  Google Scholar 

  68. Hiroyama, T., Sudo, K., Aoki, N., et al. (2008). Human umbilical cord-derived cells can often serve as feeder cells to maintain primate embryonic stem cells in a state capable of producing hematopoietic cells. Cell Biology International, 32(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Pähler for the technical assistance and accomplishment of RT-PCR analysis, Dr. Johanna Walter for the help in the evaluation of Human Cytokine Antibody Array and Prof. DDr. Martijn van Griensven from the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (Vienna, Austria) for kindly provided adipose tissue-derived MSC.

This study was supported by a grant from the German Research Foundation (Project number KA 1784/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kasper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majore, I., Moretti, P., Stahl, F. et al. Growth and Differentiation Properties of Mesenchymal Stromal Cell Populations Derived from Whole Human Umbilical Cord. Stem Cell Rev and Rep 7, 17–31 (2011). https://doi.org/10.1007/s12015-010-9165-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9165-y

Keywords

Navigation