Skip to main content

Advertisement

Log in

Characterization of a Novel Umbilical Cord Lining Cell with CD227 Positivity and Unique Pattern of P63 Expression and Function

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Umbilical cord tissue is gaining attention as a novel source of multipotent stem cells because it is easily obtainable, ethically acceptable and the cells are immunologically naïve. In this study, we have isolated and characterized a new cell type expressing MUCIN1 (CD227) from human umbilical cord lining which we termed MUCIN-expressing Cord Lining Epithelial Cell (CLEC-muc). We found that CLEC-muc is highly proliferative and had significant clonogenic ability. These cells express embryonic stem cell markers OCT-4, NANOG, SSEA-4, REX1 and SOX2. Despite the abundant expression of epithelial cell marker MUCIN1 and cytokeratins, this population is also positive to the mesenchymal stem cell (MSC) marker CD166. CLEC-muc is unique in p63 expression that shuttles from the cytoplasm to the nucleus over time in culture. To understand p63 regulation and function in CLEC-muc, cells were treated with BMP4, a potent morphogen that plays a role in epidermal differentiation via p63 upregulation in ES cell and subsequent analyses were done. We found that BMP4 does not alter cytoplasmic expression of p63 that promotes cell proliferation. However, it increases nuclear p63 expression together with several other epithelial-associated genes such as GATA3, JAGGED1, NOTCH1, HES1 and IKKα. BMP4 has also been found to weakly induce deltaNp63 expression in CLEC-muc. Our results suggest that CLEC-muc is a novel stem cell-like population that can be further differentiated by BMP4 to generate specific cell-types probably destined to form non-keratinized epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Wagner, J. E., & Gluckman, E. (2010). Umbilical cord blood transplantation: the first 20 years. Seminars of Hematology, 47(1), 3–12.

    Article  Google Scholar 

  2. Copeland, N., Harris, D., & Gaballa, M. A. (2009). Human umbilical cord blood stem cells, myocardial infarction and stroke. Clinical Medicine, 9(4), 342–345.

    PubMed  Google Scholar 

  3. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.

    Article  PubMed  Google Scholar 

  4. Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.

    Article  PubMed  Google Scholar 

  5. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    Article  PubMed  Google Scholar 

  6. Miki, T., Lehmann, T., Cai, H., Stolz, D. B., & Strom, S. C. (2005). Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  7. Miki, T., Mitamura, K., Ross, M. A., Stolz, D. B., & Strom, S. C. (2007). Identifi cation of stem cell marker-positive cells by immunofl uorescence in term human amnion. Journal of Reproductive Immunology, 75, 91–96.

    Article  PubMed  CAS  Google Scholar 

  8. Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21, 105–110.

    Article  PubMed  Google Scholar 

  9. Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., et al. (2007). 2007. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25(2), 319–331.

    CAS  Google Scholar 

  10. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25, 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  11. Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development, 19(4), 491–502.

    Article  PubMed  CAS  Google Scholar 

  12. Mizoguchi, M., Ikeda, S., Suga, Y., & Ogawa, H. (2000). Expression of cytokeratins and cornified cell envelope-associated proteins in umbilical cord epithelium: a comparative study of the umbilical cord, amniotic epithelia and fetal skin. Journal of Investigative Dermatology, 115, 133–134.

    Article  PubMed  CAS  Google Scholar 

  13. Hoyes, A. D. (1969). Ultrastructure of the epithelium of the human umbilical cord. Journal of Anatomy, 105, 149–62.

    PubMed  CAS  Google Scholar 

  14. Mizoguchi, M., Suga, Y., Sanmano, B., Ikeda, S., & Ogawa, H. (2004). Organotypic culture and surface plantation using umbilical cord epithelial cells: morphogenesis and expression of differentiation markers mimicking cutaneous epidermis. Journal of Dermatological Science, 35, 199–206.

    Article  PubMed  CAS  Google Scholar 

  15. Sanmano, B., Mizoguchi, M., Suga, Y., Ikeda, S., & Ogawa, H. (2005). Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. Journal of Dermatological Science, 37, 29–39.

    Article  PubMed  CAS  Google Scholar 

  16. Ruetze, M., Gallinat, S., Lim, I. J., et al. (2008). Common features of umbilical cord epithelial cells and epidermal keratinocytes. Journal of Dermatological Science, 50, 227–231.

    Article  PubMed  CAS  Google Scholar 

  17. Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., & Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398, 708–713.

    Article  PubMed  CAS  Google Scholar 

  18. Candi, E., Rufini, A., Terrinoni, A., et al. (2006). Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death and Differentiation, 13, 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  19. Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129(3), 523–536.

    Article  PubMed  CAS  Google Scholar 

  20. Di Iorio, E., Barbaro, V., Ruzza, A., et al. (2005). Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 102, 9523–9528.

    Article  PubMed  Google Scholar 

  21. Candi, E., Rufini, A., Terrinoni, A., et al. (2007). DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proceedings of the National Academy of Sciences of the United States of America, 104, 11999–12004.

    Article  PubMed  CAS  Google Scholar 

  22. Medawar, A., Virolle, T., Rostagno, P., et al. (2008). DNp63 is essential for epidermal commitment of embryonic stem cells. PLoS One, 3(10), e3441.

    Article  PubMed  Google Scholar 

  23. Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28, 31–40.

    Article  PubMed  CAS  Google Scholar 

  24. Chang, C., & Hemmati-Brivanlou, A. (1998). Cell fate determination in embryonic ectoderm. Journal of Neurobiology, 36, 128–151.

    Article  PubMed  CAS  Google Scholar 

  25. Chaloin-Dufau, C., Pavitt, I., Delorme, P., & Dhouailly, D. (1993). Identification of keratins 3 and 12 in corneal epithelium of vertebrates. Epithelial Cell Biology, 2, 120–125.

    PubMed  CAS  Google Scholar 

  26. Wolosin, J. M., Budak, M. T., & Akinci, M. M. A. (2004). Ocular surface epithelial and stem cell development. International Journal of Developmental Biology, 48, 981–991.

    Article  PubMed  Google Scholar 

  27. Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.

    Article  PubMed  CAS  Google Scholar 

  28. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  29. Mizoguchi, M., Ikeda, S., Suga, Y., & Ogawa, H. (2000). Expression of cytokeratins and cornified cell envelope-associated proteins in umbilical cord epithelium: a comparative study of the umbilical cord, amniotic epithelia and fetal skin. Journal of Investigative Dermatology, 115(1), 133–134.

    Article  PubMed  CAS  Google Scholar 

  30. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  31. Mitsui, K., Tokuzawa, Y., Itoh, H., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.

    Article  PubMed  CAS  Google Scholar 

  32. Rao, R. R., & Stice, S. L. (2004). Gene expression profiling of embryonic stem cells leads to greater understanding of pluripotency and early developmental events. Biology of Reproduction, 71(6), 1772–1778.

    Article  PubMed  CAS  Google Scholar 

  33. Munoz-Sanjuan, I., & Brivanlou, A. H. (2002). Neural induction, the default model and embryonic stem cells. Nature Reviews Neuroscience, 3, 271–280.

    Article  PubMed  CAS  Google Scholar 

  34. Schulz, T. C., Noggle, S. A., Palmarini, G. M., et al. (2004). Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells, 22(7), 1218–38.

    Article  PubMed  CAS  Google Scholar 

  35. Gambaro, K., Aberdam, E., Virolle, T., Aberdam, D., & Rouleau, M. (2006). BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell derived neural precursors. Cell Death and Differentiation, 13, 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, J. B., Zaehres, H., Wu, G., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454, 646–650.

    Article  PubMed  CAS  Google Scholar 

  37. Basu-Roy, U., Ambrosetti, D., Favaro, R., Nicolis, S. K., Mansukhanim A,, & Basilico, C. (2010). The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death and Differentiation, 21, [Epub ahead of print].

  38. Kestendjieva, S., Kyurkchiev, D., Tsvetkova, G., et al. (2008). Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biology International, 32(7), 724–732.

    Article  PubMed  CAS  Google Scholar 

  39. Schugar, R. C., Chirieleison, S. M., Wescoe, K. E., et al. (2009). High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. Journal of Biomedicine and Biotechnology, 2009, 789526.

    Article  PubMed  Google Scholar 

  40. Chang, Y. J., Tseng, C. P., Hsu, L. F., Hsieh, T. B., & Hwang, S. M. (2006). Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biology International, 30(6), 495–499.

    Article  PubMed  CAS  Google Scholar 

  41. Lammerding, J., Kazarov, A. R., Huang, H., Lee, R. T., & Hemler, M. E. (2003). Tetraspanin. CD151 regulates alpha6beta1 integrin adhesion strengthening. Proceedings of the National Academy of Sciences of the United States of America, 100, 7616–7621.

    Article  PubMed  CAS  Google Scholar 

  42. Metallo, C. M., Ji, L., de Pablo, J. J., & Palecek, S. P. (2008). Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 26, 372–380.

    Article  PubMed  CAS  Google Scholar 

  43. Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 3, 291–294.

    Article  Google Scholar 

  44. Bratthauer, G. L., Saenger, J. S., & Strauss, B. L. (2005). Antibodies targeting p63 react specifically in the cytoplasm of breast epithelial cells exhibiting secretory differentiation. Histopathology, 47(6), 611–616.

    Article  PubMed  CAS  Google Scholar 

  45. Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J., & Roop, D. R. (2004). p63 is the molecular switch for initiation of an epithelial stratification program. Genes and Development, 18(2), 126–131.

    Article  PubMed  CAS  Google Scholar 

  46. Blanpain, C., Lowry, W. E., Pasolli, H. A., & Fuchs, E. (2006). Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes and Development, 20(21), 3022–3035.

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen, B. C., Lefort, K., Mandinova, A., et al. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes and Development, 20, 1028–1042.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Biomedical Research Council, Singapore (BMRC 04/1/35/19/302 and 07/1/35/19/536 to LPK Ang).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Pek-Kiang Ang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reza, H.M., Ng, BY., Phan, T.T. et al. Characterization of a Novel Umbilical Cord Lining Cell with CD227 Positivity and Unique Pattern of P63 Expression and Function. Stem Cell Rev and Rep 7, 624–638 (2011). https://doi.org/10.1007/s12015-010-9214-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9214-6

Keywords

Navigation