Skip to main content

Advertisement

Log in

Differentiation of Human Endometrial Stromal Cells into Oligodendrocyte Progenitor Cells (OPCs)

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oligodendrocytes are myelinating cells in the central nervous system that form the myelin sheath of axons to support rapid nerve conduction. Human endometrial stromal cells (EnSCs) are the abundant and easy available source for cell replacement therapy. In the present study, the EnSCs were coaxed to oligodendrocyte progenitor programming by induction of neuronal condition media, including bFGF, epidermal growth factor, and platelet-derived growth factor (PDGF)-AA signaling molecules as well as triiodothyronine. Differentiated cells were analyzed for expression of oligodendrocytic markers by quantitative reverse transcription PCR and immunocytochemistry. The results showed the expression of oligodendrocyte lineage markers such as nestin, PDGF receptor alpha (PDGFRα), Sox10, and Olig2 in the level of mRNAs. The expression of nestin and PDGFRα increased after 8 days posttreatment. Interestingly, the expression of nestin and PDGFRα genes at the levels of mRNA and proteins decreased 24 days after induction. The expression of A2B5, O4, and Olig2 proteins in EnSCs was confirmed using immunocytochemistry. The results confirmed that EnSCs could response to the signaling molecules which routinely applied for oligodendrocyte differentiation. Here for the first time, we demonstrated that EnSCs could be programmed into oligodendrocyte progenitor cells and may convince to consider these cells as suitable source for cell therapy of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai J, Shahverdi AR, Ebrahimi S et al (2012) Derivation of adipocytes from human endometrial stem cells (EnSCs). J Reprod Infertil 13:151–157

    PubMed  CAS  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80

    Article  PubMed  Google Scholar 

  • Chua SJ, Bielecki R, Wong CJ et al (2009) Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum- free, feeder free cell culture. Biochem Biophys Res Commun 379:217–221

    Article  PubMed  CAS  Google Scholar 

  • Czepiel M, Balasubramaniyan V, Schaafsma W et al (2011) Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia 59:882–892

    Article  PubMed  Google Scholar 

  • Dimitrov R, Timeva T, Kyurkchiev D et al (2008) Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 135:551–558

    Article  PubMed  CAS  Google Scholar 

  • Durand B, Raff M (2000) A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22:64–71

    Article  PubMed  CAS  Google Scholar 

  • Einstein O, Fainstein N, Vaknin I et al (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61:209–218

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  PubMed  CAS  Google Scholar 

  • Gargett CE (2006) Identification and characterization of human endometrial stem/progenitor cells. Aust N Z Obstet Gynaecol 46:250–253

    Article  Google Scholar 

  • Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Updat 13:87–101

    Article  CAS  Google Scholar 

  • Gargett C, Schwab K, Zillwood R et al (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Gargett C, Masuda H (2010) Adult stem cells in the endometrium. Mol Hum Reprod 16:818–834

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson ML, Rao AJ, Demerdash O et al (2011) Expression of nestin by neural cells in the adult rat and human brain. PLoS One 6:1–15

    Article  Google Scholar 

  • Jabbour HN, Kelly RW, Fraser HM et al (2006) Endocrine regulation of menstruation. Endocr Rev 27:17–46

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Wada T, Ikenaka K (2001) Regulation of oligodendrocyte development. Microse Res Tech 52:740–745

    Article  CAS  Google Scholar 

  • Kennea N, Waddington S, Chan J et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbrodt K, Herbarth B, Sock E et al (1998) Sox10 a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Martino G, Franklin RJ, Van AB et al (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6:247–255

    Article  PubMed  Google Scholar 

  • Meng X, Ichim TE, Zhong J et al (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57–67

    Article  PubMed  CAS  Google Scholar 

  • Mobarakeh TZ, Ai J, Yazdani F et al (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19:7–14

    Article  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N et al (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396

    Article  PubMed  Google Scholar 

  • Ogawa S, Tokumoto Y, Miyake J et al (2011) Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Animal 47:464–469

    Article  CAS  Google Scholar 

  • Patel AN, Park E, Kuzman M et al (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Sasson I, Taylo H (2008) Stem cells and the pathogenesis of endometriosis. Ann NY Acad Sci 1127:106–115

    Article  PubMed  Google Scholar 

  • Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 23:934–943

    Article  PubMed  CAS  Google Scholar 

  • Sher F, Balasubramaniyan V, Boddeke E et al (2008) Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy. Curr Opin Neurol 21:607–614

    Article  PubMed  Google Scholar 

  • Uccelli A, Mancardi G (2010) Stem cell transplantation in multiple sclerosis. Curr Opin Neurol 23:218–225

    Article  PubMed  Google Scholar 

  • Wang Y, Deng Z, Lai X et al (2005) Differentiation of human bone marrow stromal cells into neural-like cells induced by sodium ferulate in vitro. Cell Mol Immunol 2:225–229

    PubMed  CAS  Google Scholar 

  • Wolff E, Gao X, Yao K et al (2010) Endometrial stem cell transplantation restores dopamine production in a Parkinson disease model. J Cell Mol Med 15:747–755

    Article  Google Scholar 

  • Zhang HT, Fan J, Cai YQ et al (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79:15–20

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the research assistant of the Tehran University of Medical Sciences for supporting this work and the Research Center for Science and Technology in Medicine and Iranian Council of Stem Cell Technology.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi-Barough, S., Kouchesfahani, H.M., Ai, J. et al. Differentiation of Human Endometrial Stromal Cells into Oligodendrocyte Progenitor Cells (OPCs). J Mol Neurosci 51, 265–273 (2013). https://doi.org/10.1007/s12031-013-9957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9957-z

Keywords

Navigation