Skip to main content

Halophiles in Nanotechnology

  • Chapter
  • First Online:
Extremophiles: Applications in Nanotechnology

Abstract

Halophiles are salt loving organisms that flourish in saline environments such as marine and estuarine environments, solar salterns, salt lakes, brines and saline soils. They offer potential applications in various fields of biotechnology. They can be used as a source of metabolites, compatible solutes and other compounds of industrial value. The biodegradation of organic pollutants in hypersaline environments and treatment of saline effluents contaminated with organic by halophiles have been investigated. Some halophiles are a potential source of extracellular hydrolases like proteases with a wide array of industrial applications. These enzymes exhibit stability over a range of saline conditions and harsh conditions of pH or/and ionic strength. Recently, they are being explored as potential sources of metal tolerant microorganisms with the ability to synthesize metallic nanoparticles. This chapter covers the various halophilic organisms and their by-products that have been exploited for nanomaterial synthesis, the mechanisms that may be involved in the nanomaterial fabrication and the possible applications of the fabricated nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni SK (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Digest J Nano Biostruct 6:385–390

    Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderatehalophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52:353–359

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  PubMed  Google Scholar 

  • Apte M, Girme G, Bankar A, Kumar AR, Zinjarde S (2013) 3,4-dihydroxy-L- phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol 11:2. doi:10.1186/1477-3155-11-2

    Article  CAS  Google Scholar 

  • Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E, Béjar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  CAS  PubMed  Google Scholar 

  • Aubin-Tam M-E, Hamad-Schifferli K (2008) Structure and function of nanoparticle-protein conjugates. Biomed Mater 3:034001–034017

    Article  PubMed  CAS  Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865

    Article  CAS  PubMed  Google Scholar 

  • Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S (2007) Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett 269:124–130

    Article  CAS  PubMed  Google Scholar 

  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  CAS  PubMed  Google Scholar 

  • Béjar V, Llamas I, Calco C, Quesada E (1998) Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina. J Biotechnol 61:135–141

    Article  Google Scholar 

  • Bell G, Janssen AEM, Halling PJ (1997) Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: interconversion of water concentrations and activities. Enzyme Microb Technol 20:471–477

    Article  CAS  Google Scholar 

  • Bellino MG, Regazzoni AE, Soler-Illia GJAA (2010) Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms. ACS Appl Mater Interf 2:360–365

    Article  CAS  Google Scholar 

  • Borgne SL, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  CAS  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci USA 103:4846–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Zhao D, Hou J, Wu J, Cai S, DasSarma P, Xiang H (2012) Cellular and organellar membrane-associated proteins in haloarchaea: perspectives on the physiological significance and biotechnological applications. Sci China Life Sci 55:404–414

    Article  CAS  PubMed  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Chi MC, Wang TF, Chen JC, Lin LL (2012) Preparation of magnetic nanoparticles and their use for immobilization of C-terminally lysine-tagged Bacillus sp. TS-23 α-Amylase. Appl Biochem Biotechnol 166:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Zholi A, Frabutt D, Flood M, Floyd D, Tiquia SM (2012) Linking bacterial diversity and geochemistry of uranium-contaminated groundwater. Environ Technol 33:1629–1640

    Article  CAS  PubMed  Google Scholar 

  • Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninowa JL, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Cat B. 99:56–67

    Article  CAS  Google Scholar 

  • Cong L, Kaul R, Dissing U, Mattiasson B (1995) A modem study on eurogit and polyethyleneimine as soluble carriers of α-amylase for repeated hydrolysis of starch. J Biotechnol 42:75–84

    Article  CAS  Google Scholar 

  • Cordeiro AL, Lenk T, Werner C (2011) Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. J Biotechnol 154:216–221

    Article  CAS  PubMed  Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    CAS  PubMed  Google Scholar 

  • Crespilho FN, Lima FCA, da Silva ABF, Oliveira ON Jr, Zucolotto V (2009) The origin of the molecular interaction between amino acids and gold nanoparticles: a theoretical and experimental investigation. Chem Phys Lett 469:186–190

    Article  CAS  Google Scholar 

  • DasSarma S (1989) Mechanisms of genetic variability in Halobacterium halobium: the purple membrane and gas vesicle mutations. Can J Microbiol 35:65–72

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S (2009) Halophiles. Encycl Life Sci 1–9

    Google Scholar 

  • DasSarma S, Arora P (1997) Genetic analysis of gas vesicle gene cluster in haloarchaea. FEMS Microbiol Lett 153:1–10

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLs. Wiley, Chichester. doi:10.1002/9780470015902. a0000394.pub3

  • DasSarma S, Arora P, Lin F, Molinari E, Yin LR (1994) Wild-type gas vesicle formation requires at least ten genes in the gvp gene cluster of Halobacterium halobium plasmid pNRC100. J Bacteriol 176:7646–7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma P, Coker JA, Huse V, DasSarma S (2010a) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New Jersey, pp 1–43

    Google Scholar 

  • DasSarma SL, Capes MD, DasSarma P, DasSarma S (2010b) HaloWeb: the haloarchaeal genomes database. Saline Syst 6:12. doi:10.1186/1746-1448-6-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma P, Zamora RC, Müller JA, DasSarma S (2012) Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 194: 5530–5537

    Google Scholar 

  • DasSarma S, Karan R, DasSarma P, Barnes S, Ekulona F, Smith B (2013) An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea. BMC Biotechnol 13:112. doi:10.1186/1472-6750-13-112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DasSarma S, Damerval T, Jones JG, Tandeau de Marsac N (1987) A plasmid encoded gas vesicle protein gene in a halophilic archaebacterium. Mol Microbiol 1:365–370

    Article  CAS  PubMed  Google Scholar 

  • Davidenko TI (1999) Immobilization of alkaline protease on polysaccharides of microbial origin. Pharm Chem J 33:487–489

    Article  CAS  Google Scholar 

  • Dawes EA (1990) Novel biodegradable microbial polymers. Kluwer Academic Publisher, Netherlands 243 p

    Book  Google Scholar 

  • Dhandayuthapani B, Saino HV, Aswathy RG, Yoshida Y, Maekawa T, Kumar DS (2012) Evaluation of antithrombogenicity and hydrophilicity on ZeinSWCNT electrospun fibrous nanocomposite scaffolds. Int J Biomaterials. doi:10.1155/2012/345029

    Google Scholar 

  • Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 17–35

    Chapter  Google Scholar 

  • DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    Article  PubMed  Google Scholar 

  • Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415

    Article  CAS  PubMed  Google Scholar 

  • El-Rafie HM, El-Rafie HM, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macroalgae. Carbohydr Polym 96:403–410

    Article  CAS  PubMed  Google Scholar 

  • Enache M, Kamekura M (2010) The halophilic enzyme and their economical values. Rom J Biochem 47:47–59

    CAS  Google Scholar 

  • Enache M, Cojoc R, Kamekura M (2015) Halophilic microorganisms and their biomolecules: approaching into frame of bio(Nano) technologies. In: Maheshwari DK, Saraf M (eds) Halophiles, sustainable development and biodiversity. Springer International Publishing, Switzerland, pp 161–169

    Google Scholar 

  • Evans CGT, Yeo RG, Ellwood DC (1979) Continuous culture studies on the production of extracellular polysaccharides. In: Berkely RCW, Gooday GW, Ellewood DC (eds) Microbial polysaccharides and polysaccharases. Academic Press, London, pp 51–64

    Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60:1307–1315

    Article  CAS  Google Scholar 

  • Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  PubMed  Google Scholar 

  • Gomathi V (2009). Studies on Thraustochytrid species for PUFA production and nanoparticles synthesis. Ph.D Thesis, CAS in Marine Biology, Annamalai University, India. pp 60

    Google Scholar 

  • Graziano G, Merlino A (2014) Molecular bases of protein halotolerance. Biochim Biophys Acta 1844:850–858

    Article  CAS  PubMed  Google Scholar 

  • Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for alzheimer’s disease. Nano Lett 4:1029–1034

    Article  CAS  Google Scholar 

  • Halladay JT, Jones JG, Lin F, MacDonald AB, DasSarma S (1993) The rightward gas vesicle operon in Halobacterium plasmid pNRC100: identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J Bacteriol 175:684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison G, Curie C, Laishley EJ (1984) Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol 138:72–80

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Hyon SH, Cha WI, Ikada Y (1993) Immobilization of thiol proteases onto porous poly (vinyl alcohol) beads. Polym J 25:489–497

    Article  CAS  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495

    Article  CAS  PubMed  Google Scholar 

  • Jarman TR (1979) Bacterial alginate synthesis. In: Berkeley RCW, Gooday GW, Ellwood DD (eds) Microbial polysaccharides and polysaccharases. Academic Press, London, pp 35–45

    Google Scholar 

  • Jarman TR, Deavin L, Slocombe S, Righelato RC (1978) Investigation on the effect of environmental conditions on the rate of exopolysaccharide synthesis in Azotobacter inelandii. J Gen Microbiol 107:59–64

    Article  CAS  Google Scholar 

  • Jin X, Li JF, Huang PY, Dong XY, Guo LL, Yang L, Cao YC, Wei F, Zhao Y, Chen H (2010) Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals. J Magn Magn Mater 322:2031–2037

    Article  CAS  Google Scholar 

  • Jones JG, Young DC, DasSarma S (1991) Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 102:1017–1022

    Article  Google Scholar 

  • Khan MJ, Husain Q, Ansari SA (2013) Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Appl Microbiol Biotechnol 97:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Mohd B, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766

    Article  CAS  Google Scholar 

  • Karan R, Khare SK (2011) Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Mosc) 76:686–693

    Article  CAS  Google Scholar 

  • Karan R, Kumar S, Sinha R, Khare SK (2012) Halophilic microorganisms as sources of novel enzymes. In: Satyanarayana T, Johri BN (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 555–579

    Chapter  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl. 43:6042–6108

    Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743

    Article  CAS  PubMed  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Grate W, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Kim JJ, Grate W, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  PubMed  Google Scholar 

  • Kiran KK, Chandra TS (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Appl Microbiol Biotechnol 77:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Biores Technol 116:247–251

    Article  CAS  Google Scholar 

  • Kumar S, Khare SK (2015) Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzyme Res 2015(859485):9. doi:10.1155/2015/859485

    Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumon H, Tomoshika K, Matunaga T, Ogawa M, Ohmori MA (1994) Sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38:615–619

    Article  CAS  PubMed  Google Scholar 

  • Kunte HJ, Trüper HG, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. Springer, Berlin, pp 185–200

    Chapter  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 265–282

    Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WH, Park J, Kim Y, Kim KS, Hong BH, Cho K (2011) Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv Mater 23:3460–3464

    Article  CAS  PubMed  Google Scholar 

  • Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, Tong ZT, Yu HQ (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Scientific Reports 4 (A Nature Scientific Journal), Article number: 3735 (2014) doi:10.1038/srep03735

  • Litchfield CD (2002) Halophiles. J Ind Microbiol Biotechnol 28:21–22

    Article  CAS  PubMed  Google Scholar 

  • Llamas I, del Moral A, Martínez-Checa F, Arco Y, Arias S, Quesada E (2006) Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie Van Leeuwenhoek 89:395–403

    Google Scholar 

  • Lobas D, Schumpe S, Deckwer WD (1992) The production of gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM-6314). Appl Microbiol Biotechnol 37:411–415

    Article  CAS  Google Scholar 

  • Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  • Manivannan S, Alikunhi NM, Kandasamy K (2010) In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Adv Sci Lett 3:1–6

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Hazard Mater 166:612–618

    Article  CAS  Google Scholar 

  • Meenupriya J, Majumdar A, Thangaraj M (2011) Biogenic silver nanoparticles by Aspergillus terreus MP1 and its promising antimicrobial activity. J Pharm Res 4:1648–1650

    CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Mellado E, Ventosa A (2003) Biotechnological potential of moderately and extremely halophilic microorganisms. In: Barredo JL (ed) Microorganisms for health care, food and enzyme production. Research Signpost, Trivandrum, pp 233–256

    Google Scholar 

  • Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Moreno ML, Perez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Muthukannan R, Karuppiah B (2011) Rapid synthesis and characterization of silver nanoparticles by novel Pseudomonas sp. “ram bt-1”. J Ecobiotechnol 3:24

    Google Scholar 

  • Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225. doi:10.1002/adma.201100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome Sequence of Halobacterium species NRC-1. Proc Nat Aca Sci USA 97:12176–12181

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999a) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (1999b) The halophilic Archaea—evolutionary relationships and adaptation to life at high salt concentrations. In: Wasser SP (ed) Evolutionary theory and processes: modern perspectives. Papers in honour of eviatar nevo. Kluwer Academic, Dordrecht, pp 345–361

    Chapter  Google Scholar 

  • Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002b) Halophilic microorganisms and their environments. Kluwer Academic, Dordrecht 575 p

    Book  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. doi:10.1186/1746-1448-4-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol. 31:825–834

    Google Scholar 

  • Oren A (2012) Industrial and environmental applications of halophilic Microorganisms. Environ Technol 31:825–834

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Switzer-Blum J, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oza G, Pandey S, Shah R, Sharon M (2012) A mechanistic approach for biological fabrication of crystalline gold nanoparticles using marine algae, Sargassum wightii. Eur J Exp Biol. 2:505–512

    CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  PubMed  Google Scholar 

  • Pawar V, Shinde A, Kumar AR, Zinjarde S, Gosavi S (2012) Tropical marine microbe mediated synthesis of cadmium nanostructures. Sci Adv Mater 4:135–142

    Article  CAS  Google Scholar 

  • Pengo P, Baltzer L, Pasquato L, Scrimin P (2007) Substrate modulation of the activity of an artificial nanoesterase made of peptide-functionalized gold nanoparticles. Angew Chem Int Ed 46:400–406

    Article  CAS  Google Scholar 

  • Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306

    Article  CAS  PubMed  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74:309–316

    Article  CAS  Google Scholar 

  • Prakash B, Vidyasagar M, Madhukumar MS, Muralikrishna G, Sreeramulu K (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44:210–215

    Article  CAS  Google Scholar 

  • Quillaguamán J, Muñoz M, Mattiasson B, Hatti-Kaul R (2007) Optimizing conditions for poly(β-hydroxybutyrate) production by Halomonas boliviensis LC1 in batch culture with sucrose as carbon source. Appl Microbiol Biotechnol 74:981–986

    Article  PubMed  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met. doi:10.1155/2014/692643

    Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem 48:7752–7777

    Article  CAS  Google Scholar 

  • Raveendran S, Chauhan N, Nakajima Y, Toshiaki H, Kurosu S, Tanizawa Y, Tero R, Yoshida Y, Hanajiri T, Maekawa T, Ajayan PM, Sandhu A, Kumar DS (2013a) Eco-friendly route for the synthesis of highly conductive graphene using extremophiles for green electronics and bioscience. Part Part Syst Charact 30:573–578

    Article  CAS  Google Scholar 

  • Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS (2013b) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 91:22–32

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Dhandayuthapani B, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2013c) Biocompatible nanofibers based on extremophilic bacterial polysaccharide, Mauran from Halomonas maura. Carbohydr Polym 92:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Girija AR, Balasubramanian S, Ukai T, Yoshida Y, Maekawa T, Kumar DS (2014) Green approach for augmenting biocompatibility to quantum dots by extremophilic polysaccharide conjugation and nontoxic bioimaging. ACS Sustain Chem Eng 2:1551–1558

    Article  CAS  Google Scholar 

  • Reshmi R, Sanjay G, Sugunan S (2007) Immobilization of α-amylase on zirconia: a heterogeneous biocatalyst for starch hydrolysis. Catal Commun 8:393–399

    Article  CAS  Google Scholar 

  • Roca M, Haes AJ (2008) Probing cells with noble metal nanoparticle aggregates. Nanomedicine 3:555–565

    Article  CAS  PubMed  Google Scholar 

  • Sadjadi MS, Farhadyar N, Zare K (2009) Synthesis of bi-metallic Au–Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity. Superlattices Microstruct 46:563–571

    Article  CAS  Google Scholar 

  • Sathiyanarayanan G, Kiran GS, Selvin J (2013) Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Coll Surf B 102:13–20

    Article  CAS  Google Scholar 

  • Scarano G, Morelli E (2003) Properties of phytochelatin coated CdS nanocrystallites formed in a marine phytoplanktonic alga Phaeodactylum tricornutum, (Bohlin) in response to Cd. Plant Sci 155:803–810

    Article  CAS  Google Scholar 

  • Schrofel A, Kratosova G, Bohunicka G, Dobrocka E, Vavra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Article  CAS  Google Scholar 

  • Seelan JSS, Faisal AAK, Muid S (2009) Aspergillus species isolated from mangrove forests in Borneo Island, Sarawak, Malaysia. J Threat Taxa 1:344–346

    Article  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 7:1464–1469

    Article  CAS  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. p R58–8. Bull Mater Sci 35:1201–1205

    Article  CAS  Google Scholar 

  • Shafiei M, Ziaee AA, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45:694–699

    Article  CAS  Google Scholar 

  • Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2:485–492

    CAS  Google Scholar 

  • Sheldon RA, Van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  PubMed  Google Scholar 

  • Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes—osmoregulation and potential applications. Curr Sci 100:1516–1521

    CAS  Google Scholar 

  • Shivanand P, Jayaraman G (2009) Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem 44:1088–1094

    Article  CAS  Google Scholar 

  • Shively JM, Cannon GC, Heinhorst S, Bryant DA, DasSarma S, Bazylinski D, Preiss J, Steinbuchel A, Docampo R, Dahl C (2011) Bacterial and archaeal inclusions. In: eLS Encyclopedia of Life Sciences. Wiley, Chichester

    Google Scholar 

  • Shukla HD, DasSarma S (2004) Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 186:3182–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101

    Article  CAS  Google Scholar 

  • Singh AN, Singh S, Suthar N, Dubey VK (2011) Glutaraldehyde activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J Agric Food Chem. 59:6256–6262

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Khare SK (2014) Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 5:165. doi:10.3389/fmicb.2014.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Khare SK (2015) Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess Biosyst Eng 38:739–748

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Khani A, Najafzadeh K (2012) a-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74:1–5

    Article  CAS  Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 16. doi:10.1155/2013/732864

    Google Scholar 

  • Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Braganca J, Ramanan SR, Kowshik M (2014) Green Synthesis of Silver Nanoparticles by Haloarchaeon Halococcus salifodinae BK6. Adv Mater Res 938:236–241

    Article  CAS  Google Scholar 

  • Srivastava P, Kowshik M (2015) Biosynthesis of nanoparticles from halophiles. In: Maheshwari DK, Saraf M (eds) Halophiles, sustainable development and biodiversity. Springer International Publishing, Switzerland, pp 145–159

    Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  • Stuart ES, Sremac M, Morshed F, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128

    Article  CAS  PubMed  Google Scholar 

  • Stuart ES, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge Press, Cambridge, 172 p

    Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tanyolaç D, Yürüksoy BI, Özdural AR (1998) Immobilization of a thermostable a-amylase onto nitrocellulase membrane by cibacron blue F3GA dye binding. Biochem Eng J 2:179–186

    Article  Google Scholar 

  • Tiquia SM (2010) Salt-adapted bacteria isolated from the Rouge River and potential for degradation of contaminants and biotechnological applications. Environ Technol 31:967–978

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Mormile MR (2010) Extremophiles—a source of innovation for industrial and environmental applications. Editorial overview. Environ Technol 31:823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray KS (2007) Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan. Environ Technol 28:297–307

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga H, Arakwa T, Tokunaga M (2008) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vala AK, Chudasama B, Patel RJ (2012) Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger. Micro Nano Lett 7:859–862

    Google Scholar 

  • Vandamme EJ, De Baets S, Steinbüchel A (2002) Polysaccharides, I: polysaccharides from prokaryotes. Wiley–VCH, Weinheim

    Google Scholar 

  • van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: old buoys in novel habitats. Trends Microbiol 13:350–354

    Article  PubMed  CAS  Google Scholar 

  • Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater Lett 65:999–1002

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlierberghe SV, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors Bioelectron 22:1841–1852

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular substances: characterization, structure and function. Springer, Berlin, pp 1–15

    Chapter  Google Scholar 

  • Wu W, Gu B, Fields MW, Gentile M, Ku YK, Yan H, Tiquia SM, Yan T, Nyman J, Zhou J, Jardine PM, Criddle CS (2005) Uranium (VI) reduction by denitrifying biomass. Bioremediat J 9:1–13

    Article  CAS  Google Scholar 

  • Zafrilla B, Martı´nez-Espinosa RM, Alonso MA, Bonete MJ (2010) Biodiversity of archaea and floral of two inland saltern ecosystems in the Alto Vinalopo´ Valley, Spain. Saline Syst 6:10. doi:10.1186/1746-1448-6-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanphorlin LM, Facchini FDA, Vasconcelos F, Bonugli-Santos RC, Rodrigues A, Sette LD, Gomes E, Bonilla-Rodriguez GO (2010) Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp. J Microbiol 48:331–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang R, Zhu XF, Wang LZ, Wu CX (2012) Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Chin Sci Bull 57:238–246

    Article  CAS  Google Scholar 

  • Zhao H, Song Z, Olubajo O (2010) High transesterification activities of immobilized proteases in new ether-functionalized ionic liquids. Biotechnol Lett 32:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Chen C, Cheng Q, Wang Y, Chu C (2006) Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. Int Immunopharmacol 6:1093–1099

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Tiquia-Arashiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Tiquia-Arashiro, S., Rodrigues, D. (2016). Halophiles in Nanotechnology. In: Extremophiles: Applications in Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-45215-9_2

Download citation

Publish with us

Policies and ethics