Skip to main content
Log in

Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron microscopy (SEM) and TEM showed that the nanoparticles were associated with the diatom frustules and extracellular polysaccharides (EPS) excreted by the diatom cells. Due to its accessibility, simplicity, and effectiveness, this method of nanocomposites preparation has great importance for possible future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison DG, Gilbert P, Lappin-Scott HM, Wilson M (2000) Community structure and co-operation in biofilms. Cambridge University, Cambridge

    Book  Google Scholar 

  • Bellezza F, Cipiciani A, Latterini L, Posati T, Sassi P (2009) Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites. Langmuir 25:10918–10923

    Article  CAS  Google Scholar 

  • Ben-Ari ET (1999) Not just slime—beneath the slippery exterior of a microbial biofilm lies a remarkably organized community of organisms. Bioscience 49:689–695

    Article  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  Google Scholar 

  • Brayner R, Barberousse H, Hernadi M, Djedjat C, Yepremian C, Coradin T, Livage J, Fievet F, Coute A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechno 7:2696–2708

    Article  CAS  Google Scholar 

  • Brayner R, Yepremian C, Djediat C, Coradin T, Herbst F, Livage J, Fievet F, Coute A (2009) Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. Langmuir 25:10062–10067

    Article  CAS  Google Scholar 

  • Budroni G, Corma A (2006) Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew Chem Int Edit 45:3328–3331

    Article  CAS  Google Scholar 

  • Bus E, Miller JT, van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587

    Article  CAS  Google Scholar 

  • Carregal-Romero S, Perez-Juste J, Herves P, Liz-Marzan LM, Mulvaney P (2010) Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Christensen BE (1999) Physical and chemical properties of extracellular polysaccharides associated with biofilms and related systems. In: Wingender J, Neu T, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, New York, pp 143–154

    Google Scholar 

  • Crawford SA, Chiovitti A, Pickett-Heaps J, Wetherbee R (2009) Micromorphogenesis during diatom wall formation produces siliceous nanostructures with different properties 1. J Phycol 45:1353–1362

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Dotzauer DM, Dai JH, Sun L, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6:2268–2272

    Article  CAS  Google Scholar 

  • El Rassy H, Belamie E, Livage J, Coradin T (2005) Onion phases as biomimetic confined media for silica nanoparticle growth. Langmuir 21:8584–8587

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs). Part 1. Structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  Google Scholar 

  • Flemming HC, Wingender J, Mayer C, Kurstgens V, Borchard W (2000) Cohesiveness in biofilm matrix polymers. In: Allison DG, Gilbert P, Lappin-Scott HM, Wilson M (eds) Community structure and co-operation in biofilms. Cambridge University, Cambridge, pp 87–105

    Chapter  Google Scholar 

  • Foo CW, Huang J, Kaplan DL (2004) Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol 22:577–585

    Article  CAS  Google Scholar 

  • Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Interaction of gold(I) and gold(III) complexes with algal biomass. Environ Sci Technol 20:632–677

    Article  Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide C. J Phycol 8:10–14

    CAS  Google Scholar 

  • Hildebrand M (2003) Biological processing of nanostructured silica in diatoms. Prog Org Coat 47:256–266

    Article  CAS  Google Scholar 

  • Hildebrand M (2005) Prospects of manipulating diatom silica nanostructure. J Nanosci Nanotechno 5:146–157

    Article  CAS  Google Scholar 

  • Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135

    Article  CAS  Google Scholar 

  • Kim JH, Bryan WW, Lee TR (2008) Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir 24:11147–11152

    Article  CAS  Google Scholar 

  • Kröger N, Bergsdorf C, Sumper M (1996) Frustulins: domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 239:259–264

    Article  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  CAS  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (2001) Silica precipitating peptides from diatoms: the chemical structure of silaffin-1A from Cylindrotheca fusiformis. J Biol Chem 276:26066–26070

    Article  CAS  Google Scholar 

  • Kroger N, Lorenz S, Brunner E, Sumper M (2002) Biosilica morphogenesis requires silaffin phosphorylation. Science 298:584–586

    Article  Google Scholar 

  • Krpetic Z, Scari G, Caneva E, Speranza G, Porta F (2009) Gold nanoparticles prepared using cape aloe active components. Langmuir 25:7217–7221

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) Accumulation of gold by algal biosorbent. Biorecovery 1:189–204

    CAS  Google Scholar 

  • Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thio sulfate complex. Geochim Cosmochim Ac 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007a) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2007b) Precipitation of gold by the reaction of aqueous gold(III) chloride with cyanobacteria at 25–80 degrees C—studied by X-ray absorption spectroscopy. Can J Chem 85:651–659

    Article  CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurrell MS (2004) Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements. App Catal A-Gen 259:163–168

    Article  CAS  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mosiniewicz-Szablewska E, Safarikova M, Safarik I (2010) Magnetic studies of ferrofluid-modified microbial cells. J Nanosci Nanotechno 10:2531–2536

    Article  CAS  Google Scholar 

  • Nam DH, Won K, Kim YH, Sang BI (2009) A novel route for immobilization of proteins to silica particles incorporating silaffin domains. Biotechnol Progr 25:1643–1649

    CAS  Google Scholar 

  • Paerl BS, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Eco 31:225–247

    Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  Google Scholar 

  • Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  • Sutherland IW (2001a) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  Google Scholar 

  • Sutherland IW (2001b) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  Google Scholar 

  • van de Poll WH, Vrieling EG, Gieskes WWC (1999) Location and expression of frustulins in the pennate diatoms Cylindrotheca fusiformis, Navicula pelliculosa, and Navicula salinarum (Bacillariophyceae). J Phycol 35:1044–1053

    Article  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University, Cambridge

    Google Scholar 

  • Vijayakumar PS, Prasad BLV (2009) Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25:11741–11747

    Article  CAS  Google Scholar 

  • Volcani BE (1981) Cell wall formation in diatoms: morphogenesis and biochemistry. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer-Verlag, Berlin, pp 157–200

    Google Scholar 

  • Wimpenny J (2000) An overview of biofilms as functional communities. In: Allison DG, Gilbert P, Lappin-Scott HM, Wilson M (eds) Community structure and co-operation in biofilms. Cambridge University, Cambridge, pp 1–24

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Czech Ministry of Education, Youth and Sports for the support of this project (research grants MSM 6198910016, MSM 6007665801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schröfel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2011_221_MOESM1_ESM.pdf

Electronic Supporting Material Available: TEM micrograph of Navicula atomus cells after tetrachloroaureate addition (Supporting Fig. 1); SEM overview micrograph of Navicula atomus cells after tetrachloroaureate addition (Supporting Fig. 2); SEM micrograph of Diadesmis gallica cells after tetrachloroaureate addition. Association of gold nanoparticles with EPS structures between two DG frustules. (Supporting Fig. 3); TEM micrograph of Navicula atomus cells after tetrachloroaureate addition. Detail of silica deposit vesicles (marked with arrow) (Supporting Fig. 4). Supplementary material 1 (PDF 5009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröfel, A., Kratošová, G., Bohunická, M. et al. Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13, 3207–3216 (2011). https://doi.org/10.1007/s11051-011-0221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0221-6

Keywords

Navigation