Skip to main content

Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity

  • Chapter
  • First Online:
Apoptosis in Cancer Pathogenesis and Anti-cancer Therapy

Abstract

Radiotherapy (RT) predominantly is aimed to induce DNA damage in tumour cells that results in reduction of their clonogenicity and finally in tumour cell death. Adaptation of RT with higher single doses has become necessary and led to a more detailed view on what kind of tumour cell death is induced and which immunological consequences result from it. RT is capable of rendering tumour cells immunogenic by modifying the tumour cell phenotype and the microenvironment. Danger signals are released as well as the senescence-associated secretory phenotype. This results in maturation of dendritic cells and priming of cytotoxic T cells as well as in activation of natural killer cells. However, RT on the other hand can also result in immune suppressive events including apoptosis induction and foster tumour cell proliferation. That’s why RT is nowadays increasingly combined with selected immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lederman M. The early history of radiotherapy: 1895-1939. Int J Radiat Oncol Biol Phys. 1981;7:639–48.

    Article  CAS  PubMed  Google Scholar 

  2. Goodman LS, Wintrobe MM, Dameshek W, et al. Landmark article Sept. 21, 1946: nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. By Louis S. Goodman, Maxwell M. Wintrobe, William Dameshek, Morton J. Goodman, Alfred Gilman and Margaret T. McLennan. JAMA. 1984;251:2255–61.

    Article  CAS  PubMed  Google Scholar 

  3. Kalbasi A, June CH, Haas N, et al. Radiation and immunotherapy: a synergistic combination. J Clin Invest. 2013;123:2756–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aziz K, Nowsheen S, Pantelias G, et al. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther. 2012;133:334–50.

    Article  CAS  PubMed  Google Scholar 

  5. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.

    Article  CAS  PubMed  Google Scholar 

  6. Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol. 2009;92:310–5.

    Article  CAS  PubMed  Google Scholar 

  7. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4:737–47.

    Article  CAS  PubMed  Google Scholar 

  8. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells. 2010;28:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Helbig L, Koi L, Bruchner K, et al. Hypoxia-inducible factor pathway inhibition resolves tumor hypoxia and improves local tumor control after single-dose irradiation. Int J Radiat Oncol Biol Phys. 2014;88:159–66.

    Article  CAS  PubMed  Google Scholar 

  10. Murata T, Akagi K, Kimura H, et al. Analysis of cell kinetics after irradiation by flow cytometry: proliferative ability of G2-blocked cells after cell sorting. Oncol Rep. 1998;5:385–8.

    CAS  PubMed  Google Scholar 

  11. Maier P, Wenz F, Herskind C. Radioprotection of normal tissue cells. Strahlenther Onkol. 2014;190:745–52.

    Article  PubMed  Google Scholar 

  12. Travis EL, Parkins CS, Down JD, et al. Repair in mouse lung between multiple small doses of X rays. Radiat Res. 1983;94:326–39.

    Article  CAS  PubMed  Google Scholar 

  13. Williams MV, Denekamp J, Fowler JF. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys. 1985;11:87–96.

    Article  CAS  PubMed  Google Scholar 

  14. Qi XS, White J, Li XA. Is alpha/beta for breast cancer really low? Radiother Oncol. 2011;100:282–8.

    Article  PubMed  Google Scholar 

  15. Durante M, Reppingen N, Held KD. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med. 2013;19:565–82.

    Article  CAS  PubMed  Google Scholar 

  16. Orth M, Lauber K, Niyazi M, et al. Current concepts in clinical radiation oncology. Radiat Environ Biophys. 2014;53:1–29.

    Article  CAS  PubMed  Google Scholar 

  17. Amornwichet N, Oike T, Shibata A, et al. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe. PLoS One. 2014;9, e115121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fragkos M, Beard P. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint. PLoS One. 2011;6, e22946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castedo M, Perfettini JL, Roumier T, et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23:2825–37.

    Article  CAS  PubMed  Google Scholar 

  20. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    Article  CAS  PubMed  Google Scholar 

  21. Kurz DJ, Decary S, Hong Y, et al. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113(Pt 20):3613–22.

    CAS  PubMed  Google Scholar 

  22. Jones KR, Elmore LW, Jackson-Cook C, et al. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int J Radiat Biol. 2005;81:445–58.

    Article  CAS  PubMed  Google Scholar 

  23. Kotter B, Frey B, Winderl M, et al. The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation. Radiat Oncol. 2015;10:197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.

    Article  CAS  PubMed  Google Scholar 

  25. Shelton DN, Chang E, Whittier PS, et al. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–45.

    Article  CAS  PubMed  Google Scholar 

  26. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  CAS  PubMed  Google Scholar 

  27. Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.

    Article  CAS  PubMed  Google Scholar 

  28. Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.

    Article  CAS  PubMed  Google Scholar 

  29. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalby KN, Tekedereli I, Lopez-Berestein G, et al. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6:1221–8.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Yang Y, Yang X, et al. Autophagy and its function in radiosensitivity. Tumour Biol. 2015;36:4079–87.

    Article  CAS  PubMed  Google Scholar 

  35. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang D, Tang B, Xie X, et al. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther. 2015;16:1005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. SenGupta T, Torgersen ML, Kassahun H, et al. Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nat Commun. 2013;4:2674.

    Article  PubMed  CAS  Google Scholar 

  38. Figueiredo N, Chora A, Raquel H, et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis. Immunity. 2013;39:874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Medzhitov R. Septic shock: on the importance of being tolerant. Immunity. 2013;39:799–800.

    Article  CAS  PubMed  Google Scholar 

  40. Lin W, Yuan N, Wang Z, et al. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury. Sci Rep. 2015;5:12362.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cottone L, Capobianco A, Gualteroni C, et al. 5-Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. Int J Cancer. 2015;136:1381–9.

    Article  CAS  PubMed  Google Scholar 

  42. Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24:589–602.

    Article  CAS  PubMed  Google Scholar 

  43. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lauber K, Blumenthal SG, Waibel M, et al. Clearance of apoptotic cells: getting rid of the corpses. Mol Cell. 2004;14:277–87.

    Article  CAS  PubMed  Google Scholar 

  45. Voll RE, Herrmann M, Roth EA, et al. Immunosuppressive effects of apoptotic cells. Nature. 1997;390:350–1.

    Article  CAS  PubMed  Google Scholar 

  46. Lauber K, Munoz LE, Berens C, et al. Apoptosis induction and tumor cell repopulation: the yin and yang of radiotherapy. Radiat Oncol. 2011;6:176.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Belka C, Heinrich V, Marini P, et al. Ionizing radiation and the activation of caspase-8 in highly apoptosis-sensitive lymphoma cells. Int J Radiat Biol. 1999;75:1257–64.

    Article  CAS  PubMed  Google Scholar 

  48. Kerbel RS. Impact of multicellular resistance on the survival of solid tumors, including micrometastases. Invasion Metastasis. 1994;14:50–60.

    PubMed  Google Scholar 

  49. Rafii A, Touboul C, Al Thani H, et al. Where cancer genomics should go next: a clinician’s perspective. Hum Mol Genet. 2014;23:R69–75.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang M, Axe T, Holgate R, et al. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene. 2001;20:5449–58.

    Article  CAS  PubMed  Google Scholar 

  51. Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol. 2005;6:44–55.

    Article  CAS  PubMed  Google Scholar 

  52. Baptiste N, Prives C. p53 in the cytoplasm: a question of overkill? Cell. 2004;116:487–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sheikh MS, Burns TF, Huang Y, et al. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res. 1998;58:1593–8.

    CAS  PubMed  Google Scholar 

  54. Yoon KW, Byun S, Kwon E, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669.

    Article  PubMed  CAS  Google Scholar 

  55. Wakatsuki M, Ohno T, Iwakawa M, et al. p73 protein expression correlates with radiation-induced apoptosis in the lack of p53 response to radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2008;70:1189–94.

    Article  CAS  PubMed  Google Scholar 

  56. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  CAS  PubMed  Google Scholar 

  57. de Bruyn M, Wiersma VR, Helfrich W, et al. The ever-expanding immunomodulatory role of calreticulin in cancer immunity. Front Oncol. 2015;5:35.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–91.

    Article  CAS  PubMed  Google Scholar 

  59. Zitvogel L, Kepp O, Senovilla L, et al. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res. 2010;16:3100–4.

    Article  CAS  PubMed  Google Scholar 

  60. Frey B, Rubner Y, Wunderlich R, et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr Med Chem. 2012;19:1751–64.

    Article  CAS  PubMed  Google Scholar 

  61. Gaipl US, Sheriff A, Franz S, et al. Inefficient clearance of dying cells and autoreactivity. Curr Top Microbiol Immunol. 2006;305:161–76.

    CAS  PubMed  Google Scholar 

  62. Kocher M, Wittig A, Piroth MD, et al. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 2014;190:521–32.

    Article  PubMed  Google Scholar 

  63. Krysko O, Love Aaes T, Bachert C, et al. Many faces of DAMPs in cancer therapy. Cell Death Dis. 2013;4, e631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.

    Article  CAS  PubMed  Google Scholar 

  65. Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.

    Article  CAS  PubMed  Google Scholar 

  66. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.

    Article  CAS  PubMed  Google Scholar 

  67. Fulda S. Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol. 2014;35:51–6.

    Article  CAS  PubMed  Google Scholar 

  68. Mantel F, Frey B, Haslinger S, et al. Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenther Onkol. 2010;186:587–99.

    Article  PubMed  Google Scholar 

  69. Werthmoller N, Frey B, Wunderlich R, et al. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis. 2015;6, e1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kepp O, Senovilla L, Vitale I, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3, e955691.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stadler K, Frey B, Munoz LE, et al. Photopheresis with UV-A light and 8-methoxypsoralen leads to cell death and to release of blebs with anti-inflammatory phenotype in activated and non-activated lymphocytes. Biochem Biophys Res Commun. 2009;386:71–6.

    Article  CAS  PubMed  Google Scholar 

  72. Pineda JR, Daynac M, Chicheportiche A, et al. Vascular-derived TGF-beta increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med. 2013;5:548–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie Y, Bai O, Yuan J, et al. Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Res. 2009;69:7756–66.

    Article  CAS  PubMed  Google Scholar 

  74. Derer A, Deloch L, Rubner Y, et al. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol. 2015;6:1–19.

    Article  CAS  Google Scholar 

  75. Multhoff G, Pockley AG, Streffer C, et al. Dual role of heat shock proteins (HSPs) in anti-tumor immunity. Curr Mol Med. 2012;12:1174–82.

    Article  CAS  PubMed  Google Scholar 

  76. Galluzzi L, Senovilla L, Zitvogel L, et al. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012;11:215–33.

    Article  CAS  PubMed  Google Scholar 

  77. Fucikova J, Moserova I, Truxova I, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135:1165–77.

    Article  CAS  PubMed  Google Scholar 

  78. Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.

    Article  CAS  PubMed  Google Scholar 

  79. Meng Y, Efimova EV, Hamzeh KW, et al. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Mol Ther. 2012;20:1046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lauber K, Ernst A, Orth M, et al. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol. 2012;2:116.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rovere P, Vallinoto C, Bondanza A, et al. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol. 1998;161:4467–71.

    CAS  PubMed  Google Scholar 

  82. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  83. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  84. Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem. 2015;16:101–7.

    Article  CAS  Google Scholar 

  85. Frey B, Rubner Y, Kulzer L, et al. Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother. 2014;63:29–36.

    Article  CAS  PubMed  Google Scholar 

  86. Hodge JW, Ardiani A, Farsaci B, et al. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol. 2012;39:323–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75:2232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    Article  PubMed  Google Scholar 

  89. Mavragani IV, Laskaratou DA, Frey B, et al. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res. 2016;5:12–33.

    Google Scholar 

  90. Prasanna A, Ahmed MM, Mohiuddin M, et al. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J Thorac Dis. 2014;6:287–302.

    PubMed  PubMed Central  Google Scholar 

  91. Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kulzer L, Rubner Y, Deloch L, et al. Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol. 2014;11:328–36.

    Article  CAS  PubMed  Google Scholar 

  94. Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ganss R, Ryschich E, Klar E, et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 2002;62:1462–70.

    CAS  PubMed  Google Scholar 

  97. Hatfield P, Merrick A, Harrington K, et al. Radiation-induced cell death and dendritic cells: potential for cancer immunotherapy? Clin Oncol (R Coll Radiol). 2005;17:1–11.

    Article  CAS  Google Scholar 

  98. Barcellos-Hoff MH, Derynck R, Tsang ML, et al. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shahabi V, Postow MA, Tuck D, et al. Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. Am J Clin Oncol. 2015;38:90–7.

    Article  CAS  PubMed  Google Scholar 

  100. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19:5300–9.

    Article  CAS  PubMed  Google Scholar 

  101. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    Article  CAS  PubMed  Google Scholar 

  102. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Persa E, Balogh A, Safrany G, et al. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett. 2015;368:252–61.

    Article  CAS  PubMed  Google Scholar 

  104. Bos PD, Plitas G, Rudra D, et al. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med. 2013;210:2435–66.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Durakovic N, Bezak KB, Skarica M, et al. Host-derived Langerhans cells persist after MHC-matched allografting independent of donor T cells and critically influence the alloresponses mediated by donor lymphocyte infusions. J Immunol. 2006;177:4414–25.

    Article  CAS  PubMed  Google Scholar 

  106. Price JG, Idoyaga J, Salmon H, et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 2015;16:1060–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73:2782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frey B, Gaipl US. Radio-immunotherapy: the focused beam expands. Lancet Oncol. 2015;16:742–3.

    Article  PubMed  Google Scholar 

  109. Zitvogel L, Kroemer G. Subversion of anticancer immunosurveillance by radiotherapy. Nat Immunol. 2015;16:1005–7.

    Article  CAS  PubMed  Google Scholar 

  110. Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.

    Article  CAS  PubMed  Google Scholar 

  111. Lauber K, Herrmann M. Tumor biology: with a little help from my dying friends. Curr Biol. 2015;25:R198–201.

    Article  CAS  PubMed  Google Scholar 

  112. Ford CA, Petrova S, Pound JD, et al. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr Biol. 2015;25:577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 2013;35:585–600.

    Article  CAS  PubMed  Google Scholar 

  114. Weber M, Moebius P, Buttner-Herold M, et al. Macrophage polarisation changes within the time between diagnostic biopsy and tumour resection in oral squamous cell carcinomas—an immunohistochemical study. Br J Cancer. 2015;113:510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Revesz L. Effect of tumour cells killed by x-rays upon the growth of admixed viable cells. Nature. 1956;178:1391–2.

    Article  CAS  PubMed  Google Scholar 

  116. van den Brenk HA, Crowe MC, Stone MG. Reactions of the tumour bed to lethally irradiated tumour cells, and the Revesz effect. Br J Cancer. 1977;36:94–104.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chaurio R, Janko C, Schorn C, et al. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity. 2013;46:317–22.

    Article  CAS  PubMed  Google Scholar 

  118. Willems JJ, Arnold BP, Gregory CD. Sinister self-sacrifice: the contribution of apoptosis to malignancy. Front Immunol. 2014;5:299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Truman LA, Ford CA, Pasikowska M, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008;112:5026–36.

    Article  CAS  PubMed  Google Scholar 

  120. Tardaguila M, Mira E, Garcia-Cabezas MA, et al. CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer Res. 2013;73:4461–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moschini I, Dell’Anna C, Losardo PL, et al. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors. Future Oncol. 2015;11:2329–42.

    Article  CAS  PubMed  Google Scholar 

  122. Huang Q, Li F, Liu X, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011;17:860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hughes R, Qian BZ, Rowan C, et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015;75:3479–91.

    Article  CAS  PubMed  Google Scholar 

  124. Miles K, Clarke DJ, Lu W, et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol. 2009;183:2122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carretero R, Sektioglu IM, Garbi N, et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16:609–17.

    Article  CAS  PubMed  Google Scholar 

  126. Gregory CD, Pound JD. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol. 2011;223:177–94.

    Article  CAS  PubMed  Google Scholar 

  127. Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci. 2011;7:517–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nicolay NH, Sommer E, Perez RL, et al. Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation. Strahlenther Onkol. 2014;190:1037–45.

    Article  PubMed  Google Scholar 

  129. Holliday EB, Ahmed AA, Yoo SK, et al. Does cancer literature reflect multidisciplinary practice? A systematic review of oncology studies in the medical literature over a 20-year period. Int J Radiat Oncol Biol Phys. 2015;92:721–31.

    Article  PubMed  Google Scholar 

  130. Kadhim M, Salomaa S, Wright E, et al. Non-targeted effects of ionising radiation—implications for low dose risk. Mutat Res. 2013;752:84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Belka C, Ottinger H, Kreuzfelder E, et al. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol. 1999;50:199–204.

    Article  CAS  PubMed  Google Scholar 

  132. Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1(9):1325–32.

    Article  PubMed  Google Scholar 

  133. Frey B, Hehlgans S, Rodel F, et al. Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett. 2015;368(2):230–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in part funded by the German Federal Ministry of Education and Research (BMBF; m4 Cluster, 16EX1021R and GREWIS, 02NUK017G) and the European Commission (DoReMi, European Atomic Energy Community’s Seventh Framework Programme (FP7/2007–2011) under grant agreement no. 249689).

Conflict of Interest Statement

All authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo S. Gaipl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frey, B., Derer, A., Scheithauer, H., Wunderlich, R., Fietkau, R., Gaipl, U.S. (2016). Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity. In: Gregory, C. (eds) Apoptosis in Cancer Pathogenesis and Anti-cancer Therapy. Advances in Experimental Medicine and Biology, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-319-39406-0_7

Download citation

Publish with us

Policies and ethics