Skip to main content

Advertisement

Log in

Radioprotection of normal tissue cells

Strahlenschutz von Normalgewebszellen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Improvements of radiotherapy in combination with surgery and systemic therapy have resulted in increased survival rates of tumor patients. However, radiation-induced normal tissue toxicity is still dose limiting. Several strategies have been pursued with the goal to develop substances which may prevent or reduce damage to normal tissue. Drugs applied before radiotherapy are called radioprotectors; those given after radiotherapy to reduce long-term effects are radiomitigators. Despite more than 50 years of research, until now only two substances, amifostine and palifermin, have overcome all obstacles of clinical approval and are applied during radiotherapy of head and neck cancer or total body irradiation, respectively. However, better understanding of the cellular pathways involved in radiation response has allowed the development of several highly promising drugs functioning as scavengers of reactive oxygen species or targeting specific molecules involved in regulation of cell death pathways or cell cycle arrest. The present review describes the major targets for radioprotectors or radiomitigators currently tested in clinical trials.

Zusammenfassung

Verbesserungen in der Radiotherapie in Kombination mit Chirurgie und Chemotherapie führten zu erhöhten Überlebensraten von Tumorpatienten. Trotzdem sind Strahlenfolgen am Normalgewebe weiterhin dosislimitierend. Verschiedene Ansätze wurden verfolgt, um Substanzen zu entwickeln, die Normalgewebstoxizitäten verhindern oder verringern. Medikamente, die vor der Radiotherapie verabreicht werden, heißen Radioprotektoren, solche die danach gegeben werden, um langfristige Effekte zu reduzieren, Radiomitigatoren. Trotz mehr als 50 Jahre Forschung überwanden nur zwei Substanzen, Amifostin und Palifermin, alle Hürden der klinischen Prüfung und sind für die Anwendung während der Radiotherapie von Kopf-Hals-Tumoren bzw. bei Ganzkörperbestrahlung zugelassen. Jedoch erlaubte das bessere Verständnis der Signalwege während der Strahlenantwort die Entwicklung einiger vielversprechender Arzneimittel, die entweder als Radikalfänger funktionieren oder Regulatoren von Zelltodwegen oder dem Zellzyklusarrest als spezifische Zielmoleküle besitzen. In diesem Review werden die wichtigsten Zielmoleküle für Radioprotektoren oder -mitigatoren, die sich gegenwärtig in der klinischen Prüfung befinden, beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhide SA, Nutting CM (2010) Recent advances in radiotherapy. BMC Med 8:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7:44–54

    Article  PubMed  Google Scholar 

  3. Tipton K, Launders JH, Inamdar R, Miyamoto C, Schoelles K (2011) Stereotactic body radiation therapy: scope of the literature. Ann Intern Med 154:737–745

    Article  PubMed  Google Scholar 

  4. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199

    Article  PubMed Central  PubMed  Google Scholar 

  5. Purdy JA (2008) Dose to normal tissues outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys 95:666–676

    Article  CAS  PubMed  Google Scholar 

  6. Wenz F, Tiefenbacher U, Willeke F, Weber KJ (2001) The search for therapeutic gain in radiation oncology. Onkologie 24:51–55

    Article  PubMed  Google Scholar 

  7. Verellen D, Ridder MD, Linthout N, Tournel K et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7:949–960

    Article  CAS  PubMed  Google Scholar 

  8. Stieler F, Wenz F, Shi M, Lohr F (2013) A novel surface imaging system for patient positioning and surveillance during radiotherapy: a phantom study and clinical evaluation. Strahlenther Onkol 189:938–944

    Article  CAS  PubMed  Google Scholar 

  9. Bentzen SM, Gregoire V (2011) Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 21:101–110

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ch’ang HJ, Maj JG, Paris F et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11:484–490

    Article  PubMed  CAS  Google Scholar 

  11. Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528

    Article  CAS  PubMed  Google Scholar 

  12. Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Differential inhibition of radiation-induced apoptosis. Stem Cells 15:43–47

    Article  CAS  PubMed  Google Scholar 

  13. Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  CAS  PubMed  Google Scholar 

  14. Scott SD, Greco O (2004) Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 23:269–276

    Article  CAS  PubMed  Google Scholar 

  15. Cordes N, Rodel F, Rodemann HP (2012) Molecular signaling pathways. Mechanisms and clinical use. Strahlenther Onkol 188:308–311

    Article  PubMed  Google Scholar 

  16. Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:211–286

    Google Scholar 

  17. Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev 31:699–712

    Article  CAS  PubMed  Google Scholar 

  18. Maier P, Veldwijk MR, Wenz F (2011) Radioprotective gene therapy. Expert Opin Biol Ther 11:1135–1151

    Article  CAS  PubMed  Google Scholar 

  19. Herskind C (1988) Sulfhydryl protection and the oxygen effect on radiation-induced inactivation of r-chromatin in vitro. Influence of an OH scavenger: t-butanol. Radiat Res 115:141–151

    Article  CAS  PubMed  Google Scholar 

  20. Yuhas JM, Storer JB (1969) Differential chemoprotection of normal and malignant tissues. J Natl Cancer Inst 42:331–335

    CAS  PubMed  Google Scholar 

  21. Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF (1985) Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79–171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med 47:23–27

    Article  CAS  PubMed  Google Scholar 

  22. Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res 40:1519–1524

    CAS  PubMed  Google Scholar 

  23. Savoye C, Swenberg C, Hugot S et al (1997) Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 71:193–202

    Article  CAS  PubMed  Google Scholar 

  24. Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12:738–747

    Article  CAS  PubMed  Google Scholar 

  25. Sasse AD, Clark LG, Sasse EC, Clark OA (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 64:784–791

    Article  CAS  PubMed  Google Scholar 

  26. Mell LK, Malik R, Komaki R et al (2007) Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys 68:111–118

    Article  CAS  PubMed  Google Scholar 

  27. Movsas B, Scott C, Langer C et al (2005) Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98–01. J Clin Oncol 23:2145–2154

    Article  CAS  PubMed  Google Scholar 

  28. Koukourakis MI, Maltezos E (2006) Amifostine administration during radiotherapy for cancer patients with genetic, autoimmune, metabolic and other diseases. Anticancer Drugs 17:133–138

    Article  CAS  PubMed  Google Scholar 

  29. Vos O (1992) Role of endogenous thiols in protection. Adv Space Res 12:201–207

    Article  CAS  PubMed  Google Scholar 

  30. Chatterjee A (2013) Reduced glutathione: a radioprotector or a modulator of DNA-repair activity? Nutrients 5:525–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477

    Article  CAS  PubMed  Google Scholar 

  32. Russo A, Mitchell JB (1984) Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels. Int J Radiat Oncol Biol Phys 10:1243–1247

    Article  CAS  PubMed  Google Scholar 

  33. Russo A, Mitchell JB, Finkelstein E, DeGraff WG et al (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103:232–239

    Article  CAS  PubMed  Google Scholar 

  34. Mazur L (2000) Radioprotective effects of the thiols GSH and WR-2721 against X-ray-induction of micronuclei in erythroblasts. Mutat Res 468:27–33

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhuri JP, Langendorff H (1968) Chemical radioprotection of mammalian chromosomes in vivo: radioprotection of rat bone-marrow chromosomes with a single prophylactic dose of AET. Int J Radiat Biol Relat Stud Phys Chem Med 14:463–467

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee A, Jacob-Raman M, Mohapatra B (1989) Potentiation of bleomycin-induced chromosome aberrations by the radioprotector reduced glutathione. Mutat Res 214:207–213

    Article  CAS  PubMed  Google Scholar 

  37. Louie KG, Behrens BC, Kinsella TJ et al (1985) Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res 45:2110–2115

    CAS  PubMed  Google Scholar 

  38. Biaglow JE, Ayene IS, Koch CJ et al (2003) Radiation response of cells during altered protein thiol redox. Radiat Res 159:484–494

    Article  CAS  PubMed  Google Scholar 

  39. Pujari G, Berni A, Palitti F, Chatterjee A (2009) Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes. Mutat Res 675:23–28

    Article  CAS  PubMed  Google Scholar 

  40. Ray S, Chatterjee A (2007) Influence of glutathione on the induction of chromosome aberrations, delay in cell cycle kinetics and cell cycle regulator proteins in irradiated mouse bone marrow cells. Int J Radiat Biol 83:347–354

    Article  CAS  PubMed  Google Scholar 

  41. Herskind C, Westergaard O (1986) Inactivation of a single eucaryotic gene irradiated in vitro in transcriptionally active chromatin form. Radiat Res 106:331–344

    Article  CAS  Google Scholar 

  42. Herskind C, Westergaard O (1988) Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals. Radiat Res 114:28–41

    Article  CAS  PubMed  Google Scholar 

  43. Vorotnikova E, Rosenthal RA, Tries M, Doctrow SR, Braunhut SJ (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat Res 173:748–759

    Article  CAS  PubMed  Google Scholar 

  44. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  PubMed  Google Scholar 

  45. Akashi M, Hachiya M, Paquette RL et al (1995) Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J Biol Chem 270:15864–15869

    Article  CAS  PubMed  Google Scholar 

  46. Greenberger JS, Epperly MW (2007) Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. Vivo 21:141–146

    CAS  Google Scholar 

  47. Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al (2008) Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 44:982–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rabbani ZN, Batinic-Haberle I, Anscher MS et al (2007) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 67:573–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33:857–863

    Article  CAS  PubMed  Google Scholar 

  50. Doctrow SR, Huffman K, Marcus CB et al (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–4558

    Article  CAS  PubMed  Google Scholar 

  51. Rosenthal RA, Fish B, Hill RP et al (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem 11:359–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gao F, Fish BL, Szabo A et al (2012) Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res 178:468–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Doctrow SR, Lopez A, Schock AM et al (2013) A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol 133:1088–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Goff JP, Epperly MW, Dixon T et al (2011) Radiobiologic effects of GS-nitroxide (JP4–039) on the hematopoietic syndrome. Vivo 25:315–323

    Google Scholar 

  55. Epperly MW, Goff JP, Li S et al (2010) Intraesophageal administration of GS-nitroxide (JP4–039) protects against ionizing irradiation-induced esophagitis. Vivo 24:811–819

    CAS  Google Scholar 

  56. Veldwijk MR, Herskind C, Laufs S et al (2004) Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiother Oncol 72:341–350

    Article  CAS  PubMed  Google Scholar 

  57. Veldwijk MR, Trah J, Wang M et al (2011) Overexpression of manganese superoxide dismutase does not increase clonogenic cell survival despite effect on apoptosis in irradiated lymphoblastoid cells. Radiat Res 176:725–731

    Article  CAS  PubMed  Google Scholar 

  58. Zhong W, Oberley LW, Oberley TD et al (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7:1175–1186

    CAS  PubMed  Google Scholar 

  59. Epperly MW, Defilippi S, Sikora C et al (2000) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7:1011–1018

    Article  CAS  PubMed  Google Scholar 

  60. Guo H, Seixas-Silva JA Jr, Epperly MW et al (2003) Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene. Radiat Res 159:361–370

    Article  CAS  PubMed  Google Scholar 

  61. Delanian S, Martin M, Bravard A et al (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. RadiotherOncol 58:325–331

    CAS  Google Scholar 

  62. Epperly MW, Bray JA, Krager S et al (1999) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. IntJRadiatOncolBiolPhys 43:169–181

    CAS  Google Scholar 

  63. Sun J, Chen Y, Li M, Ge Z (1998) Role of antioxidant enzymes on ionizing radiation resistance. Free RadicBiolMed 24:586–593

    Article  CAS  Google Scholar 

  64. Veldwijk MR, Herskind C, Sellner L et al (2009) Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol 185:517–523

    Article  PubMed  Google Scholar 

  65. Tarhini AA, Belani CP, Luketich JD et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-cell lung cancer. Hum Gene Ther 22:336–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Maier P, Herskind C, Fleckenstein K et al (2008) MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 169:301–310

    Article  CAS  PubMed  Google Scholar 

  67. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  CAS  PubMed  Google Scholar 

  68. Gudkov AV, Komarova EA (2007) Dangerous habits of a security guard: the two faces of p53 as a drug target. Hum Mol Genet 16:R67–R72

    Google Scholar 

  69. Gudkov AV, Komarova EA (2010) Radioprotection: smart games with death. J Clin Invest 120:2270–2273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Strom E, Sathe S, Komarov PG et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479

    Article  CAS  PubMed  Google Scholar 

  71. Leonova KI, Shneyder J, Antoch MP et al (2010) A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle 9:1434–1443

    Article  CAS  PubMed  Google Scholar 

  72. Christophorou MA, Ringshausen I, Finch AJ et al (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:214–217

    Article  CAS  PubMed  Google Scholar 

  73. Sinn B, Schulze J, Schroeder G et al (2010) Pifithrin-alpha as a potential cytoprotective agent in radiotherapy: protection of normal tissue without decreasing therapeutic efficacy in glioma cells. Radiat Res 174:601–610

    Article  CAS  PubMed  Google Scholar 

  74. Finch PW, Rubin JS, Miki T et al (1989) Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755

    Article  CAS  PubMed  Google Scholar 

  75. Miki T, Fleming TP, Bottaro DP et al (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75

    Article  CAS  PubMed  Google Scholar 

  76. Finch PW, Rubin JS (2006) Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 98:812–824

    Article  CAS  PubMed  Google Scholar 

  77. Wildhaber BE, Yang H, Teitelbaum DH (2003) Keratinocyte growth factor decreases total parenteral nutrition-induced apoptosis in mouse intestinal epithelium via Bcl-2. J Pediatr Surg 38:92–96 (discussion 92–96)

    Google Scholar 

  78. Niture SK, Jaiswal AK (2013) Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic Biol Med 57:119–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Braun S, Hanselmann C, Gassmann MG et al (2002) Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 22:5492–5505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    Google Scholar 

  81. Spielberger R, Stiff P, Bensinger W et al (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351:2590–2598

    Article  CAS  PubMed  Google Scholar 

  82. Stiff PJ, Emmanouilides C, Bensinger WI et al (2006) Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol 24:5186–5193

    Article  CAS  PubMed  Google Scholar 

  83. Raber-Durlacher JE, von Bultzingslowen I, Logan RM et al (2013) Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support Care Cancer 21:343–355

    Article  PubMed  Google Scholar 

  84. Alvarez E, Fey EG, Valax P et al (2003) Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/radiation-induced oral mucositis. Clin Cancer Res 9:3454–3461

    CAS  PubMed  Google Scholar 

  85. Steiling H, Werner S (2003) Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 14:533–537

    Article  CAS  PubMed  Google Scholar 

  86. Schuster MW, Shore TB, Harpel JG et al (2008) Safety and tolerability of velafermin (CG53135–05) in patients receiving high-dose chemotherapy and autologous peripheral blood stem cell transplant. Support Care Cancer 16:477–483

    Article  PubMed  Google Scholar 

  87. Freytes CO, Ratanatharathorn V, Taylor C et al (2004) Phase I/II randomized trial evaluating the safety and clinical effects of repifermin administered to reduce mucositis in patients undergoing autologous hematopoietic stem cell transplantation. Clin Cancer Res 10:8318–8324

    Article  CAS  PubMed  Google Scholar 

  88. Kim SB, Pandita RK, Eskiocak U et al (2012) Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA 109:E2949–E2955

    Google Scholar 

  89. Mustata G, Li M, Zevola N et al (2011) Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem 11:281–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Inoue A, Seidel MG, Wu W et al (2002) Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer cell 2:279–288

    Google Scholar 

  91. Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F (2010) SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 173:612–619

    Article  CAS  PubMed  Google Scholar 

  92. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS letters 580:998–1009

    Google Scholar 

  93. Ruefli AA, Tainton KM, Darcy PK, Smyth MJ, Johnstone RW (2002) P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 9:1266–1272

    Article  CAS  PubMed  Google Scholar 

  94. Tainton KM, Smyth MJ, Jackson JT et al (2004) Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 11:1028–1037

    Article  CAS  PubMed  Google Scholar 

  95. Belka C, Rudner J, Wesselborg S et al (2000) Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 19:1181–1190

    Article  CAS  PubMed  Google Scholar 

  96. Maier P, Fleckenstein K, Li L et al (2006) Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 166:463–473

    Article  CAS  PubMed  Google Scholar 

  97. Tallant T, Deb A, Kar N et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4:33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Burdelya LG, Krivokrysenko VI, Tallant TC et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230

    Article  CAS  PubMed  Google Scholar 

  99. Wang ZD, Qiao YL, Tian XF et al (2012) Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev 13:4763–4767

    Article  PubMed  Google Scholar 

  100. Zhou SX, Li FS, Qiao YL et al (2012) Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner. Asian Pac J Cancer Prev 13:2807–2812

    Article  PubMed  Google Scholar 

  101. Fry DW, Harvey PJ, Keller PR et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438

    CAS  PubMed  Google Scholar 

  102. Toogood PL, Harvey PJ, Repine JT et al (2005) Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 48:2388–2406

    Article  CAS  PubMed  Google Scholar 

  103. Zhu G, Conner SE, Zhou X et al (2003) Synthesis, structure-activity relationship, and biological studies of indolocarbazoles as potent cyclin D1-CDK4 inhibitors. J Med Chem 46:2027–2030

    Article  CAS  PubMed  Google Scholar 

  104. Johnson SM, Torrice CD, Bell JF et al (2010) Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin Invest 120:2528–2536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Collins I, Garrett MD (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5:366–373

    Article  CAS  PubMed  Google Scholar 

  106. Chernikova SB, Game JC, Brown JM (2012) Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13:61–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Liang Y, Lin SY, Brunicardi FC et al (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33:661–666

    Article  PubMed  Google Scholar 

  108. Greenberger JS (2009) Radioprotection. Vivo 23:323–336

    CAS  Google Scholar 

  109. Erenpreisa J, Kalejs M, Cragg MS (2005) Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. Cell Biol Int 29:1012–1018

    Article  CAS  PubMed  Google Scholar 

  110. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest

P. Maier, F. Wenz, and C. Herskind state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, P., Wenz, F. & Herskind, C. Radioprotection of normal tissue cells. Strahlenther Onkol 190, 745–752 (2014). https://doi.org/10.1007/s00066-014-0637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0637-x

Keywords

Schlüsselwörter

Navigation